Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,7 +1,92 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
-
|
4 |
-
|
5 |
|
6 |
-
|
7 |
-
iface.launch()
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
+
os.system('cd monotonic_align && python setup.py build_ext --inplace && cd ..')
|
4 |
+
|
5 |
+
import librosa
|
6 |
+
import numpy as np
|
7 |
+
import torch
|
8 |
+
from torch import no_grad, LongTensor
|
9 |
+
import commons
|
10 |
+
import utils
|
11 |
import gradio as gr
|
12 |
+
from models import SynthesizerTrn
|
13 |
+
from text import text_to_sequence
|
14 |
+
from mel_processing import spectrogram_torch
|
15 |
+
|
16 |
+
|
17 |
+
def get_text(text):
|
18 |
+
text_norm = text_to_sequence(text, hps.symbols, hps.data.text_cleaners)
|
19 |
+
if hps.data.add_blank:
|
20 |
+
text_norm = commons.intersperse(text_norm, 0)
|
21 |
+
text_norm = LongTensor(text_norm)
|
22 |
+
return text_norm
|
23 |
+
|
24 |
+
|
25 |
+
def tts_fn(text, speaker_id):
|
26 |
+
if len(text) > 150:
|
27 |
+
return "Error: Text is too long", None
|
28 |
+
stn_tst = get_text(text)
|
29 |
+
with no_grad():
|
30 |
+
x_tst = stn_tst.unsqueeze(0)
|
31 |
+
x_tst_lengths = LongTensor([stn_tst.size(0)])
|
32 |
+
sid = LongTensor([speaker_id])
|
33 |
+
audio = model.infer(x_tst, x_tst_lengths, sid=sid, noise_scale=.667, noise_scale_w=0.8, length_scale=1)[0][
|
34 |
+
0, 0].data.cpu().float().numpy()
|
35 |
+
return "Success", (hps.data.sampling_rate, audio)
|
36 |
+
|
37 |
+
|
38 |
+
def vc_fn(original_speaker_id, target_speaker_id, input_audio):
|
39 |
+
if input_audio is None:
|
40 |
+
return "You need to upload an audio", None
|
41 |
+
sampling_rate, audio = input_audio
|
42 |
+
duration = audio.shape[0] / sampling_rate
|
43 |
+
if duration > 30:
|
44 |
+
return "Error: Audio is too long", None
|
45 |
+
audio = (audio / np.iinfo(audio.dtype).max).astype(np.float32)
|
46 |
+
if len(audio.shape) > 1:
|
47 |
+
audio = librosa.to_mono(audio.transpose(1, 0))
|
48 |
+
if sampling_rate != hps.data.sampling_rate:
|
49 |
+
audio = librosa.resample(audio, orig_sr=sampling_rate, target_sr=hps.data.sampling_rate)
|
50 |
+
y = torch.FloatTensor(audio)
|
51 |
+
y = y.unsqueeze(0)
|
52 |
+
spec = spectrogram_torch(y, hps.data.filter_length,
|
53 |
+
hps.data.sampling_rate, hps.data.hop_length, hps.data.win_length,
|
54 |
+
center=False)
|
55 |
+
spec_lengths = LongTensor([spec.size(-1)])
|
56 |
+
sid_src = LongTensor([original_speaker_id])
|
57 |
+
sid_tgt = LongTensor([target_speaker_id])
|
58 |
+
with no_grad():
|
59 |
+
audio = model.voice_conversion(spec, spec_lengths, sid_src=sid_src, sid_tgt=sid_tgt)[0][
|
60 |
+
0, 0].data.cpu().float().numpy()
|
61 |
+
return "Success", (hps.data.sampling_rate, audio)
|
62 |
+
|
63 |
+
|
64 |
+
if __name__ == '__main__':
|
65 |
+
config_path = "saved_model/config.json"
|
66 |
+
model_path = "saved_model/model.pth"
|
67 |
+
hps = utils.get_hparams_from_file(config_path)
|
68 |
+
model = SynthesizerTrn(
|
69 |
+
len(hps.symbols),
|
70 |
+
hps.data.filter_length // 2 + 1,
|
71 |
+
hps.train.segment_size // hps.data.hop_length,
|
72 |
+
n_speakers=hps.data.n_speakers,
|
73 |
+
**hps.model)
|
74 |
+
utils.load_checkpoint(model_path, model, None)
|
75 |
+
model.eval()
|
76 |
+
|
77 |
+
app = gr.Blocks()
|
78 |
+
|
79 |
+
with app:
|
80 |
+
with gr.Tabs():
|
81 |
+
with gr.TabItem("TTS"):
|
82 |
+
with gr.Column():
|
83 |
+
tts_input1 = gr.TextArea(label="Text (150 words limitation)", value="こんにちは。")
|
84 |
+
tts_input2 = gr.Dropdown(label="Speaker", choices=hps.speakers, type="index", value=hps.speakers[0])
|
85 |
+
tts_submit = gr.Button("Generate", variant="primary")
|
86 |
+
tts_output1 = gr.Textbox(label="Output Message")
|
87 |
+
tts_output2 = gr.Audio(label="Output Audio")
|
88 |
|
89 |
+
tts_submit.click(tts_fn, [tts_input1, tts_input2], [tts_output1, tts_output2])
|
90 |
+
vc_submit.click(vc_fn, [vc_input1, vc_input2, vc_input3], [vc_output1, vc_output2])
|
91 |
|
92 |
+
app.launch()
|
|