Spaces:
Running
on
Zero
Running
on
Zero
File size: 7,267 Bytes
35a6947 219b233 35a6947 219b233 35a6947 4474b1e fa32d54 19a112b 57fc112 19a112b fa32d54 586b09a 219b233 35a6947 219b233 fa32d54 2e49b95 96f056b fa32d54 219b233 35a6947 219b233 35a6947 219b233 35a6947 c23e991 219b233 35a6947 586b09a e783b74 52d2817 e783b74 219b233 39fee28 219b233 57a34a9 219b233 35a6947 586b09a 6815a5c 35a6947 219b233 35a6947 ea14e74 3359d47 ea14e74 35a6947 3359d47 fea2e7e 6815a5c fea2e7e 6815a5c fea2e7e 6815a5c fea2e7e 3359d47 35a6947 ea14e74 219b233 35a6947 fea2e7e c16a8c1 2bde0d4 219b233 aa3daa3 ea14e74 35a6947 ea14e74 35a6947 ea14e74 52d2817 219b233 ea14e74 219b233 ea14e74 219b233 ea14e74 35a6947 219b233 ea14e74 219b233 01b8d54 219b233 57a34a9 219b233 ea14e74 01b8d54 ea14e74 35a6947 219b233 57a34a9 35a6947 219b233 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 |
import gradio as gr
import numpy as np
import random
import spaces
import torch
from diffusers import DiffusionPipeline, FlowMatchEulerDiscreteScheduler, AutoencoderTiny, AutoencoderKL
from transformers import CLIPTextModel, CLIPTokenizer,T5EncoderModel, T5TokenizerFast
from live_preview_helpers import calculate_shift, retrieve_timesteps, flux_pipe_call_that_returns_an_iterable_of_images
from llm_wrapper import run_gemini
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file
import subprocess
subprocess.run("rm -rf /data-nvme/zerogpu-offload/*", env={}, shell=True)
dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"
taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to(device)
good_vae = AutoencoderKL.from_pretrained("black-forest-labs/FLUX.1-dev", subfolder="vae", torch_dtype=dtype).to(device)
pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=dtype, vae=taef1).to(device)
# PONIX mode load
pipe.load_lora_weights('cwhuh/ponix-generator-v0.2.0', weight_name='pytorch_lora_weights.safetensors')
embedding_path = hf_hub_download(repo_id='cwhuh/ponix-generator-v0.2.0', filename='./ponix-generator-v0.2.0_emb.safetensors', repo_type="model")
state_dict = load_file(embedding_path)
pipe.load_textual_inversion(state_dict["clip_l"], token=["<s0>", "<s1>", "<s2>"], text_encoder=pipe.text_encoder, tokenizer=pipe.tokenizer)
torch.cuda.empty_cache()
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048
pipe.flux_pipe_call_that_returns_an_iterable_of_images = flux_pipe_call_that_returns_an_iterable_of_images.__get__(pipe)
@spaces.GPU(duration=50)
def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, guidance_scale=3.5, num_inference_steps=28, progress=gr.Progress(track_tqdm=True)):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(seed)
print(f"User Prompt: {prompt}")
refined_prompt = run_gemini(
target_prompt=prompt,
prompt_in_path="prompt.json",
)
print(f"Refined Prompt: {refined_prompt}")
for img in pipe.flux_pipe_call_that_returns_an_iterable_of_images(
prompt=refined_prompt,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
width=width,
height=height,
generator=generator,
output_type="pil",
good_vae=good_vae,
):
yield img, seed
examples = [
"κΈ°κ³κ³΅νκ³Ό(λ‘μΌ) ν¬λμ€",
"λ°μ΄μ¬λ¦°μ μ°μ£Όνλ ν¬λμ€",
"물리νμ μ°κ΅¬νλ ν¬λμ€",
"μ»΄ν¨ν°κ³΅νκ³Ό ν¬λμ€"
]
css="""
#col-container {
margin: 0 auto;
max-width: 580px;
}
.footer {
text-align: center;
margin-top: 20px;
font-size: 0.8em;
color: #666;
}
/* URL λ§ν¬ μ€νμΌ */
a {
color: #666 !important;
text-decoration: underline;
}
a:hover {
color: rgb(200, 1, 80) !important;
}
/* κΈ°λ³Έ ν
λ§ μμμ ν¬μ€ν
λ λλ‘ λ³κ²½ */
:root {
--primary-50: rgb(255, 240, 244);
--primary-100: rgb(255, 200, 220);
--primary-200: rgb(255, 150, 180);
--primary-300: rgb(255, 100, 140);
--primary-400: rgb(255, 50, 100);
--primary-500: rgb(200, 1, 80);
--primary-600: rgb(180, 1, 70);
--primary-700: rgb(160, 1, 60);
--primary-800: rgb(140, 1, 50);
--primary-900: rgb(120, 1, 40);
--primary-950: rgb(100, 1, 30);
}
"""
with gr.Blocks(css=css, theme="soft") as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(f"""# π [POSTECH] PONIX Generator
**[[Github](https://github.com/posplexity/ponix-generator)]** **[[νΌλλ°±](https://docs.google.com/forms/d/1BccziUtYGF0ToTjZ8PmxZExJJgzpErCuWmrm6ui0COc/edit)]**
[based on FLUX.1-dev](https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md)
""")
with gr.Group():
gr.Markdown("""
### π μ¬μ© κ°μ΄λ
- μμ±νκ³ μΆμ μ΄λ―Έμ§λ₯Ό νκΈλ‘ κ°λ¨νκ² μμ±ν΄μ£ΌμΈμ.
- μ΄λ―Έμ§λ λ
Έμ΄μ¦μμ μ μ°¨μ μΌλ‘ μμ±λ©λλ€. (40~50μ΄ μμ)
- λ¬Έμλ μ΄λ©μΌλ‘ λΆνλ립λλ€: [email protected]
""")
with gr.Group():
prompt = gr.Text(
label="ν둬ννΈ μ
λ ₯",
max_lines=1,
placeholder="μνλ ν¬λμ€ μ΄λ―Έμ§λ₯Ό νκΈλ‘ μ€λͺ
ν΄μ£ΌμΈμ",
container=True,
)
run_button = gr.Button("π μμ±νκΈ°", variant="primary")
result = gr.Image(label="μμ±λ μ΄λ―Έμ§")
with gr.Accordion("π οΈ κ³ κΈ μ€μ ", open=False):
with gr.Group():
use_prompt_refinement = gr.Checkbox(
label="ν둬ννΈ μλ κ°μ ",
value=True,
info="AIκ° μ
λ ₯ν ν둬ννΈλ₯Ό μλμΌλ‘ κ°μ ν©λλ€."
)
with gr.Row():
seed = gr.Slider(
label="μλ κ°",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="λλ€ μλ μ¬μ©", value=True)
with gr.Row():
width = gr.Slider(
label="λλΉ",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
height = gr.Slider(
label="λμ΄",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
with gr.Row():
guidance_scale = gr.Slider(
label="κ°μ΄λμ€ μ€μΌμΌ",
minimum=1,
maximum=15,
step=0.1,
value=3.5,
)
num_inference_steps = gr.Slider(
label="μΆλ‘ λ¨κ³ μ",
minimum=1,
maximum=50,
step=1,
value=28,
)
gr.Markdown("### μμ ν둬ννΈ")
gr.Examples(
examples = examples,
fn = infer,
inputs = [prompt],
outputs = [result, seed],
cache_examples="lazy"
)
gr.HTML("""
<div class="footer">
PONIX Generator by νμ±μ | POSTECH
</div>
""")
gr.on(
triggers=[run_button.click, prompt.submit],
fn = infer,
inputs = [prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
outputs = [result, seed]
)
demo.launch() |