File size: 5,171 Bytes
35a6947
 
 
219b233
35a6947
219b233
 
 
35a6947
fa32d54
 
19a112b
 
 
fa32d54
219b233
35a6947
 
219b233
 
 
fa32d54
 
ad665fa
 
 
 
fa32d54
219b233
35a6947
 
219b233
35a6947
219b233
35a6947
219b233
 
35a6947
 
 
219b233
 
 
 
 
 
 
 
 
 
 
 
 
35a6947
219b233
 
 
35a6947
 
219b233
35a6947
 
219b233
35a6947
 
 
 
219b233
35a6947
fa32d54
219b233
 
 
35a6947
219b233
35a6947
 
 
 
 
 
 
219b233
 
 
35a6947
219b233
35a6947
219b233
35a6947
 
 
 
 
 
 
219b233
35a6947
219b233
35a6947
219b233
35a6947
 
 
 
 
219b233
35a6947
219b233
35a6947
 
 
 
 
219b233
35a6947
219b233
35a6947
219b233
35a6947
219b233
 
 
35a6947
219b233
35a6947
219b233
35a6947
 
 
 
 
219b233
35a6947
219b233
 
 
 
 
 
 
 
35a6947
 
 
219b233
 
 
35a6947
 
219b233
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
import gradio as gr
import numpy as np
import random
import spaces
import torch
from diffusers import  DiffusionPipeline, FlowMatchEulerDiscreteScheduler, AutoencoderTiny, AutoencoderKL
from transformers import CLIPTextModel, CLIPTokenizer,T5EncoderModel, T5TokenizerFast
from live_preview_helpers import calculate_shift, retrieve_timesteps, flux_pipe_call_that_returns_an_iterable_of_images

from huggingface_hub import hf_hub_download
from safetensors.torch import load_file
import subprocess

subprocess.run("rm -rf /data-nvme/zerogpu-offload/*", env={}, shell=True)

dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"

taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to(device)
good_vae = AutoencoderKL.from_pretrained("black-forest-labs/FLUX.1-dev", subfolder="vae", torch_dtype=dtype).to(device)
pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=dtype, vae=taef1).to(device)

# PONIX mode load
# pipe.load_lora_weights('cwhuh/ponix-generator-v0.1.0', weight_name='pytorch_lora_weights.safetensors')
# embedding_path = hf_hub_download(repo_id='cwhuh/ponix-generator-v0.1.0', filename='./ponix-generator-v0.1.0_emb.safetensors', repo_type="model")
# state_dict = load_file(embedding_path)
# pipe.load_textual_inversion(state_dict["clip_l"], token=["<s0>", "<s1>", "<s2>"], text_encoder=pipe.text_encoder, tokenizer=pipe.tokenizer)

torch.cuda.empty_cache()

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048

pipe.flux_pipe_call_that_returns_an_iterable_of_images = flux_pipe_call_that_returns_an_iterable_of_images.__get__(pipe)

@spaces.GPU(duration=75)
def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, guidance_scale=3.5, num_inference_steps=28, progress=gr.Progress(track_tqdm=True)):
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    generator = torch.Generator().manual_seed(seed)
    
    for img in pipe.flux_pipe_call_that_returns_an_iterable_of_images(
            prompt=prompt,
            guidance_scale=guidance_scale,
            num_inference_steps=num_inference_steps,
            width=width,
            height=height,
            generator=generator,
            output_type="pil",
            good_vae=good_vae,
        ):
            yield img, seed
    
examples = [
    "๋กœ์ผ“์— ํƒ€๊ณ  ์žˆ๋Š” ํฌ๋‹‰์Šค",
    "์ผ๋ ‰๊ธฐํƒ€๋ฅผ ๋“ค๊ณ  ์žˆ๋Š” ํฌ๋‹‰์Šค",
    "์ปดํ“จํ„ฐ๊ณตํ•™์„ ๊ณต๋ถ€์ค‘์ธ ํฌ๋‹‰์Šค",
]

css="""
#col-container {
    margin: 0 auto;
    max-width: 520px;
}
"""

with gr.Blocks(css=css) as demo:
    
    with gr.Column(elem_id="col-container"):
        gr.Markdown(f"""# [POSTECH] PONIX Generator
[[non-commercial license](https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md)] [[blog](https://blackforestlabs.ai/announcing-black-forest-labs/)] [[model](https://huggingface.co/black-forest-labs/FLUX.1-dev)]
        """)
        
        with gr.Row():
            
            prompt = gr.Text(
                label="Prompt",
                show_label=False,
                max_lines=1,
                placeholder="Enter your prompt",
                container=False,
            )
            
            run_button = gr.Button("Run", scale=0)
        
        result = gr.Image(label="Result", show_label=False)
        
        with gr.Accordion("Advanced Settings", open=False):
            
            seed = gr.Slider(
                label="Seed",
                minimum=0,
                maximum=MAX_SEED,
                step=1,
                value=0,
            )
            
            randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
            
            with gr.Row():
                
                width = gr.Slider(
                    label="Width",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=1024,
                )
                
                height = gr.Slider(
                    label="Height",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=1024,
                )
            
            with gr.Row():

                guidance_scale = gr.Slider(
                    label="Guidance Scale",
                    minimum=1,
                    maximum=15,
                    step=0.1,
                    value=3.5,
                )
  
                num_inference_steps = gr.Slider(
                    label="Number of inference steps",
                    minimum=1,
                    maximum=50,
                    step=1,
                    value=28,
                )
        
        gr.Examples(
            examples = examples,
            fn = infer,
            inputs = [prompt],
            outputs = [result, seed],
            cache_examples="lazy"
        )

    gr.on(
        triggers=[run_button.click, prompt.submit],
        fn = infer,
        inputs = [prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
        outputs = [result, seed]
    )

demo.launch()