Spaces:
Running
on
Zero
Running
on
Zero
File size: 5,462 Bytes
35a6947 219b233 35a6947 219b233 35a6947 4474b1e fa32d54 19a112b 57fc112 19a112b fa32d54 586b09a 219b233 35a6947 219b233 fa32d54 96f056b fa32d54 219b233 35a6947 219b233 35a6947 219b233 35a6947 219b233 35a6947 586b09a 474f4f9 219b233 39fee28 219b233 57a34a9 219b233 35a6947 586b09a 35a6947 219b233 35a6947 219b233 35a6947 219b233 35a6947 586b09a 474f4f9 219b233 35a6947 219b233 35a6947 474f4f9 219b233 35a6947 219b233 35a6947 474f4f9 219b233 35a6947 219b233 35a6947 219b233 35a6947 219b233 35a6947 219b233 35a6947 219b233 35a6947 219b233 35a6947 219b233 35a6947 219b233 35a6947 219b233 35a6947 219b233 35a6947 219b233 57a34a9 219b233 35a6947 219b233 57a34a9 35a6947 219b233 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 |
import gradio as gr
import numpy as np
import random
import spaces
import torch
from diffusers import DiffusionPipeline, FlowMatchEulerDiscreteScheduler, AutoencoderTiny, AutoencoderKL
from transformers import CLIPTextModel, CLIPTokenizer,T5EncoderModel, T5TokenizerFast
from live_preview_helpers import calculate_shift, retrieve_timesteps, flux_pipe_call_that_returns_an_iterable_of_images
from llm_wrapper import run_gemini
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file
import subprocess
subprocess.run("rm -rf /data-nvme/zerogpu-offload/*", env={}, shell=True)
dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"
taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to(device)
good_vae = AutoencoderKL.from_pretrained("black-forest-labs/FLUX.1-dev", subfolder="vae", torch_dtype=dtype).to(device)
pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=dtype, vae=taef1).to(device)
# PONIX mode load
pipe.load_lora_weights('cwhuh/ponix-generator-v0.1.0', weight_name='pytorch_lora_weights.safetensors')
embedding_path = hf_hub_download(repo_id='cwhuh/ponix-generator-v0.1.0', filename='./ponix-generator-v0.1.0_emb.safetensors', repo_type="model")
state_dict = load_file(embedding_path)
pipe.load_textual_inversion(state_dict["clip_l"], token=["<s0>", "<s1>", "<s2>"], text_encoder=pipe.text_encoder, tokenizer=pipe.tokenizer)
torch.cuda.empty_cache()
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048
pipe.flux_pipe_call_that_returns_an_iterable_of_images = flux_pipe_call_that_returns_an_iterable_of_images.__get__(pipe)
@spaces.GPU(duration=75)
def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, guidance_scale=3.5, num_inference_steps=28, progress=gr.Progress(track_tqdm=True)):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(seed)
if refine_prompt:
refined_prompt = run_gemini(
target_prompt=prompt,
prompt_in_path="prompt.json",
)
print(f"Refined prompt: {refined_prompt}")
else:
refined_prompt = prompt
for img in pipe.flux_pipe_call_that_returns_an_iterable_of_images(
prompt=refined_prompt,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
width=width,
height=height,
generator=generator,
output_type="pil",
good_vae=good_vae,
):
yield img, seed
examples = [
"๊ธฐ๊ณ๊ณตํ๊ณผ(๋ก์ผ) ํฌ๋์ค",
"๋ฐ์ด์ฌ๋ฆฐ์ ์ฐ์ฃผํ๋ ํฌ๋์ค",
"๋ฌผ๋ฆฌํ์ ์ฐ๊ตฌํ๋ ํฌ๋์ค",
]
css="""
#col-container {
margin: 0 auto;
max-width: 520px;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(f"""# [POSTECH] PONIX Generator ๐
([based on FLUX.1-dev](https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md))
""")
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run", scale=0)
result = gr.Image(label="Result", show_label=False)
with gr.Accordion("Advanced Settings", open=False):
with gr.Row():
refine_prompt = gr.Checkbox(label="Refine prompt", value=True)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance Scale",
minimum=1,
maximum=15,
step=0.1,
value=3.5,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=50,
step=1,
value=28,
)
gr.Examples(
examples = examples,
fn = infer,
inputs = [prompt],
outputs = [result, seed],
cache_examples="lazy"
)
gr.on(
triggers=[run_button.click, prompt.submit],
fn = infer,
inputs = [prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
outputs = [result, seed]
)
demo.launch() |