File size: 1,034 Bytes
d12f7bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d2cb445
d12f7bd
 
 
 
 
 
 
 
 
 
 
bc12a31
d12f7bd
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
import gradio as gr
import datasets
import transformers
import torch

from transformers import AutoFeatureExtractor, AutoModelForImageClassification

dataset = datasets.load_dataset('beans')

extractor = AutoFeatureExtractor.from_pretrained("saved_model_files")
model = AutoModelForImageClassification.from_pretrained("saved_model_files")

labels = dataset['train'].features['labels'].names

def classify(im):
  features = extractor(im, return_tensors='pt')
  with torch.no_grad():
    logits = model(**features).logits
  probability = torch.nn.functional.softmax(logits, dim=-1)
  probs = probability[0].detach().numpy()
  confidences = {label: float(probs[i]) for i, label in enumerate(labels)} 
  return confidences


gr.Interface(fn = classify,
             inputs = "image",
             outputs = "label",
             examples = "examples",
             title='Leaf classification on beans dataset',
             description='Fine-tuning a ViT for bean plant health classification'
                         ).launch(debug=True)