File size: 6,462 Bytes
5120311
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
import json
import time
from .utils import get_sbert_embedding, clean_text
from sklearn.cluster import AgglomerativeClustering
from sklearn.metrics.pairwise import cosine_similarity
from nltk import sent_tokenize
import requests
# from clean_text import normalize_text

MAX_LENGTH_FEATURE = 250
MIN_LENGTH_FEATURE = 100
URL_CHECK_SPAM = "http://10.9.3.70:30036/predict"

def check_spam(docs):
    json_body = {
        "domain_id": "",
        "records": [
            {
            "text": doc.get("message",""),
            "idxcol": 1
            } for doc in docs
        ] 
    }

    result = requests.post(URL_CHECK_SPAM, json = json_body).json()
    docs = [x for i,x in enumerate(docs) if result[i]["label"] == 0]
    return docs

def preocess_feature(doc):
    message = doc.get("message","")
    paras = message.split("\n") 
    feature = ""
    paras = [clean_text(x.strip(), normalize=False) for x in paras if x.strip() and len(x.strip()) > 10]
    for para in paras:
        if len(feature) + len(para) < MAX_LENGTH_FEATURE:
            feature += " " +para
        elif len(feature) < MIN_LENGTH_FEATURE:
            sens = sent_tokenize(para)
            for sen in sens:
                if len(feature) + len(sen) < MAX_LENGTH_FEATURE or len(feature.strip()) < MIN_LENGTH_FEATURE:
                    feature += " " +sen
    return feature

def topic_clustering(docs, distance_threshold, top_cluster=5, top_sentence=5, topn_summary=5, sorted_field='', max_doc_per_cluster=50, delete_message=True, is_check_spam = True):
    # global model, model_en
    
    docs = [x for x in docs if len(x.get("message","")) > 100]
    docs = docs[:30000]
    if is_check_spam:
        docs = check_spam(docs)
    result = {}
    cluster_score = {}

    t1 = time.time()
    if len(docs) < 1:
        return result
    elif len(docs) == 1:
        return {
            "0": docs
        }

    # features = [doc.get('title', "") + ". " + doc.get('snippet', "") for doc in docs]
    
    f_docs = []
    for x in docs:
        ft = preocess_feature(x)
        if len(ft) > MIN_LENGTH_FEATURE:
            x["title"] = ft
            f_docs.append(x)
    docs = f_docs

    features = [x["title"] for x in docs ]
    # with open("feature", 'w') as f:
    #     json.dump(features, f, ensure_ascii = False)
    # print(features)
    vectors = get_sbert_embedding(features)

    clusteror = AgglomerativeClustering(n_clusters=None, compute_full_tree=True, affinity='cosine',
                                        linkage='complete', distance_threshold=distance_threshold)
    clusteror.fit(vectors)
    print(f"Time encode + clustering: {time.time() - t1} {clusteror.n_clusters_}")
    for i in range(clusteror.n_clusters_):
        result[str(i + 1)] = []
        cluster_score[str(i + 1)] = 0
    for i in range(len(clusteror.labels_)):
        cluster_no = clusteror.labels_[i]   
        if docs[i].get('domain','') not in ["cungcau.vn","baomoi.com","news.skydoor.net"]:
            response_doc = {}
            response_doc = docs[i]
            score = response_doc.get('score', 0)
            if not docs[i].get('message','').strip():
                continue 
            if score > cluster_score[str(cluster_no + 1)]:
                cluster_score[str(cluster_no + 1)] = score
            if 'domain' in docs[i]:
                response_doc['domain'] = docs[i]['domain']
            if 'url' in docs[i]:
                response_doc['url'] = docs[i]['url']
            if 'title' in docs[i]:
                response_doc['title'] = clean_text(docs[i]['title'])
            if 'snippet' in docs[i]:
                response_doc['snippet'] = clean_text(docs[i]['snippet'])
            if 'created_time' in docs[i]:
                response_doc['created_time'] = docs[i]['created_time']
            if "sentiment" in docs[i]:
                response_doc['sentiment'] = docs[i]['sentiment']
            if 'message' in docs[i]:
                title = docs[i].get('title','')
                snippet = docs[i].get('snippet','')
                message = docs[i].get('message','')
                # if title.strip():
                #     split_mess = message.split(title)
                #     if len(split_mess) > 1:
                #         message = title.join(split_mess[1:])
                # if snippet.strip():
                #     split_mess = message.split(snippet)
                #     if len(split_mess) > 1:
                #         message = snippet.join(split_mess[1:])

                response_doc['message'] = clean_text(message)
            if 'id' in docs[i]:
                response_doc['id'] = docs[i]['id']
            # response_doc['score'] = 0.0

            # response_doc['title_summarize'] = []
            # response_doc['content_summary'] = ""
            # response_doc['total_facebook_viral'] = 0
            result[str(cluster_no + 1)].append(response_doc)
    
    empty_clus_ids = []
    for x in result:
        result[x] = sorted(result[x], key=lambda i: -len(i.get('message','')))
        if len( result[x]) > 0:
            # if len(result[x]) > 1:
            #     result[x] = check_duplicate_title_domain(result[x])
            result[x][0]['num_docs'] = len(result[x])
            result[x][0]['max_score'] = cluster_score[x]
        else:
            empty_clus_ids.append(x)
    
    for x in empty_clus_ids:
        result.pop(x,None)
    
    result = dict( sorted(result.items(), key=lambda i: -len(i[1]))[:top_cluster])
    return result
    # return post_processing(result, top_cluster=top_cluster, top_sentence=top_sentence, topn_summary=topn_summary, sorted_field = sorted_field, max_doc_per_cluster=max_doc_per_cluster, delete_message=delete_message)

if __name__ == '__main__':
    # with open("/home2/vietle/DA-Report/social.json", 'r') as f:
    #     docs = json.load(f)[:2000]
    with open("/home2/vietle/news-cms/topic_summarization/data/news_cms.social.json", 'r') as f:
        docs = json.load(f)[:10000]
    clusters = topic_clustering(docs, distance_threshold=0.2, top_cluster=5000, top_sentence=5, topn_summary=5, sorted_field='', max_doc_per_cluster=50, delete_message=False)
    with open("/home2/vietle/news-cms/topic_summarization/cluster/news_cms.social.json", 'w') as f:

        json.dump(clusters,f, ensure_ascii =False)