File size: 20,897 Bytes
05c845a
 
 
0bfe3b6
05c845a
 
 
 
 
 
0bfe3b6
 
05c845a
 
 
 
6494950
 
 
 
 
 
 
 
 
05c845a
 
0bfe3b6
6494950
 
 
 
0bfe3b6
05c845a
cc93d7c
05c845a
6494950
05c845a
 
0bfe3b6
 
05c845a
58c11a0
05c845a
 
 
58c11a0
 
6494950
cc93d7c
05c845a
0bfe3b6
58c11a0
 
 
 
 
 
 
05c845a
6494950
58c11a0
 
 
 
 
 
6494950
05c845a
58c11a0
05c845a
58c11a0
05c845a
0bfe3b6
05c845a
58c11a0
 
 
 
05c845a
 
 
 
58c11a0
 
 
 
05c845a
 
0bfe3b6
05c845a
58c11a0
05c845a
58c11a0
05c845a
58c11a0
 
 
 
 
05c845a
58c11a0
05c845a
cc93d7c
05c845a
6494950
 
0bfe3b6
58c11a0
 
 
cc93d7c
58c11a0
05c845a
58c11a0
 
 
05c845a
 
 
58c11a0
05c845a
0bfe3b6
05c845a
58c11a0
 
 
05c845a
 
 
 
58c11a0
 
 
05c845a
 
0bfe3b6
05c845a
58c11a0
 
 
 
 
 
 
 
05c845a
58c11a0
6494950
0bfe3b6
05c845a
58c11a0
cc93d7c
58c11a0
cc93d7c
58c11a0
 
 
 
cc93d7c
 
58c11a0
 
 
 
 
 
 
 
 
05c845a
58c11a0
 
 
05c845a
 
 
 
58c11a0
05c845a
0bfe3b6
05c845a
58c11a0
 
 
05c845a
58c11a0
05c845a
 
 
58c11a0
 
 
05c845a
 
0bfe3b6
05c845a
58c11a0
 
 
 
 
 
 
 
 
 
 
 
 
 
05c845a
cc93d7c
58c11a0
05c845a
 
 
 
58c11a0
05c845a
0bfe3b6
05c845a
58c11a0
 
 
05c845a
58c11a0
05c845a
 
 
58c11a0
 
 
05c845a
 
0bfe3b6
58c11a0
0bfe3b6
05c845a
58c11a0
05c845a
58c11a0
 
05c845a
58c11a0
 
 
 
 
05c845a
58c11a0
 
 
 
05c845a
58c11a0
cc93d7c
 
58c11a0
05c845a
 
 
 
58c11a0
 
6494950
0bfe3b6
91761d3
58c11a0
 
05c845a
 
58c11a0
6494950
0bfe3b6
58c11a0
 
6494950
0bfe3b6
 
 
58c11a0
 
 
0bfe3b6
58c11a0
 
 
 
0bfe3b6
58c11a0
 
0bfe3b6
 
 
cc93d7c
6494950
0bfe3b6
 
 
6494950
58c11a0
0bfe3b6
6494950
0bfe3b6
6494950
58c11a0
6494950
05c845a
 
 
cc93d7c
6494950
 
58c11a0
 
 
 
6494950
 
 
 
58c11a0
 
 
 
 
6494950
58c11a0
 
 
6494950
58c11a0
 
6494950
 
58c11a0
 
 
6494950
 
0bfe3b6
6494950
58c11a0
 
 
6494950
 
 
 
 
0bfe3b6
05c845a
58c11a0
6494950
0bfe3b6
6494950
c52ed94
6494950
05c845a
6494950
58c11a0
6494950
 
58c11a0
6494950
0bfe3b6
6494950
 
1211ed4
 
6494950
 
0bfe3b6
6494950
 
 
 
0bfe3b6
6494950
 
 
 
 
0bfe3b6
05c845a
cc93d7c
05c845a
6494950
58c11a0
 
6494950
05c845a
6494950
0bfe3b6
6494950
cc93d7c
0bfe3b6
58c11a0
 
6494950
58c11a0
cc93d7c
 
6494950
05c845a
 
58c11a0
 
05c845a
6494950
0bfe3b6
6494950
cc93d7c
0bfe3b6
58c11a0
6494950
0bfe3b6
58c11a0
6494950
58c11a0
 
 
 
 
 
 
 
 
 
 
0bfe3b6
6494950
 
cc93d7c
6494950
05c845a
 
58c11a0
 
05c845a
 
0bfe3b6
 
6494950
05c845a
0bfe3b6
58c11a0
6494950
 
 
 
 
 
58c11a0
6494950
58c11a0
6494950
0bfe3b6
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
import os
import json
import gradio as gr
import gradio.themes as gr_themes 
import google.generativeai as genai
from PIL import Image
import numpy as np
from huggingface_hub import HfFolder
from dotenv import load_dotenv
import traceback
import time 


load_dotenv()
GEMINI_API_KEY = os.getenv("GEMINI_API_KEY") or HfFolder.get_token("GEMINI_API_KEY")
if not GEMINI_API_KEY:
    try:
        import secrets
        GEMINI_API_KEY = secrets.GEMINI_API_KEY
    except (ImportError, AttributeError):
         raise ValueError("Gemini API key not found. Please set the GEMINI_API_KEY environment variable or add it as a Secret if running on Hugging Face Spaces.")

if not GEMINI_API_KEY:
     raise ValueError("Gemini API key not found. Please set the GEMINI_API_KEY environment variable.")

genai.configure(api_key=GEMINI_API_KEY)


CLASSIFICATION_MODEL = "gemini-1.5-flash"
SOLUTION_MODEL = "gemini-1.5-pro-latest"
EXPLANATION_MODEL = "gemini-1.5-pro-latest"
SIMILAR_MODEL = "gemini-1.5-pro-latest"
MODEL_IMAGE = "gemini-1.5-pro-latest" 

print(f"Using models: Classification: {CLASSIFICATION_MODEL}, Solution: {SOLUTION_MODEL}, Explanation: {EXPLANATION_MODEL}, Similar: {SIMILAR_MODEL}, Image Analysis: {MODEL_IMAGE}")






def extract_text_with_gemini(image):
    """Extract text from image using Gemini Pro Vision ONLY"""
    try:
        if isinstance(image, np.ndarray):
            image = Image.fromarray(image)
        elif not isinstance(image, Image.Image):
             raise TypeError("Input must be a PIL Image or NumPy array")

        print("Attempting text extraction with Gemini Pro Vision...")
        model = genai.GenerativeModel(MODEL_IMAGE)
        
        prompt = """
        Extract ALL text, numbers, and mathematical equations from this image precisely.
        Include ALL symbols, numbers, letters, and mathematical notation exactly as they appear.
        Format any equations properly and maintain their layout.
        Don't explain the content, just extract the text verbatim.
        """
        response = model.generate_content([prompt, image], request_options={'timeout': 120})
        extracted_text = response.text.strip()

        if not extracted_text:
             print("Gemini returned empty text.")
             return "Error: Gemini could not extract any text from the image."
        else:
            print(f"Gemini extracted text (first 100 chars): {extracted_text[:100]}...")
            return extracted_text

    except Exception as e:
        print(f"Gemini Extraction Error: {e}")
        print(traceback.format_exc())
        return f"Error during text extraction with Gemini: {str(e)}"


def classify_with_gemini_flash(math_problem):
    """Classify the math problem using Gemini model (Original settings)"""
    if not math_problem or math_problem.startswith("Error:"):
        print("Skipping classification due to invalid input text.")
        return { "category": "Error", "subtopic": "Invalid Input", "difficulty": "N/A", "key_concepts": ["Text extraction failed or missing"] }
    try:
        model = genai.GenerativeModel(
            model_name=CLASSIFICATION_MODEL,
            generation_config={
                "temperature": 0.1,
                "top_p": 0.95,
                "max_output_tokens": 150, # Original value
                "response_mime_type": "application/json",
            }
        )
        
        prompt = f"""
        Task: Classify the following math problem.

        PROBLEM: {math_problem}

        Classify this math problem according to:
        1. Primary category (e.g., Algebra, Calculus, Geometry, Trigonometry, Statistics, Number Theory)
        2. Specific subtopic (e.g., Linear Equations, Derivatives, Integrals, Probability)
        3. Difficulty level (Basic, Intermediate, Advanced)
        4. Key concepts involved

        Format the response as a JSON object with the fields: "category", "subtopic", "difficulty", "key_concepts".
        """
        response = model.generate_content(prompt, request_options={'timeout': 60})
        try:
            cleaned_text = response.text.strip().replace("```json", "").replace("```", "").strip()
            classification = json.loads(cleaned_text)
            
            keys_needed = ["category", "subtopic", "difficulty", "key_concepts"]
            for key in keys_needed:
                classification.setdefault(key, "Unknown")
            if not isinstance(classification.get("key_concepts"), list):
                 classification["key_concepts"] = [str(classification.get("key_concepts", "Unknown"))]
            return classification
        except (json.JSONDecodeError, AttributeError):
            print(f"JSON Decode/Attribute Error: Unable to parse classification response: {response.text}")
            return { "category": "Unknown", "subtopic": "Parse Error", "difficulty": "Unknown", "key_concepts": ["Failed to parse classification"] }
    except Exception as e:
        print(f"Classification Error: {e}")
        print(traceback.format_exc())
        return { "category": "Error", "subtopic": "API Error", "difficulty": "Error", "key_concepts": [f"Classification failed: {str(e)}"] }


def solve_with_gemini_pro(math_problem, classification):
    """Solve the math problem using Gemini model (Original settings)"""
    if not math_problem or math_problem.startswith("Error:"):
        return "Error: Cannot solve problem due to invalid input text."
    try:
        model = genai.GenerativeModel(
            model_name=SOLUTION_MODEL,
            generation_config={
                "temperature": 0.2,
                "top_p": 0.9,
                "max_output_tokens": 1000, # Original value
            }
        )
        
        if not isinstance(classification, dict):
            classification = { "category": "Unknown", "subtopic": "Unknown", "difficulty": "Unknown", "key_concepts": ["Unknown"] }
        for field in ["category", "subtopic", "difficulty"]:
            if field not in classification or not classification[field]:
                classification[field] = "Unknown"
        if "key_concepts" not in classification or not classification["key_concepts"]:
            classification["key_concepts"] = ["Unknown"]
        if isinstance(classification["key_concepts"], list):
            key_concepts_str = ", ".join(classification["key_concepts"])
        else:
            key_concepts_str = str(classification["key_concepts"])

        
        prompt = f"""
        Task: Solve the following math problem with clear step-by-step explanations.

        PROBLEM: {math_problem}

        CLASSIFICATION:
        - Category: {classification["category"]}
        - Subtopic: {classification["subtopic"]}
        - Difficulty: {classification["difficulty"]}
        - Key Concepts: {key_concepts_str}

        Provide a complete solution following these guidelines:
        1. Start with an overview of the approach
        2. Break down the problem into clear, logical steps
        3. Explain each step thoroughly, mentioning the mathematical principles applied
        4. Show all work and calculations
        5. Verify the answer if possible
        6. Summarize the key takeaway from this problem

        Format the solution to be readable on a mobile device, with appropriate spacing between steps.
        """
        response = model.generate_content(prompt, request_options={'timeout': 180})
        if not response.text:
             return "Error: Solution generation returned an empty response."
        return response.text
    except Exception as e:
        print(f"Solution Error: {e}")
        print(traceback.format_exc())
        return f"Error generating solution: {str(e)}"


def explain_solution(math_problem, solution):
    """Provide a more detailed explanation of the solution (Original settings)"""
    if not math_problem or math_problem.startswith("Error:"): return "Error: Cannot explain problem due to invalid input text."
    if not solution or solution.startswith("Error:") or "will appear here" in solution: return "Error: Cannot explain solution as it is missing or invalid."
    try:
        print(f"Generating detailed explanation...")
        model = genai.GenerativeModel(
            model_name=EXPLANATION_MODEL,
            generation_config={
                "temperature": 0.3,
                "top_p": 0.95,
                "max_output_tokens": 1500, # Original value
            }
        )
        
        prompt = f"""
        Task: Provide a more detailed explanation of the solution to this math problem.

        PROBLEM: {math_problem}
        SOLUTION: {solution}

        Provide a more comprehensive explanation that:
        1. Breaks down complex steps into simpler components
        2. Explains the underlying mathematical principles in depth
        3. Connects this problem to fundamental concepts
        4. Offers visual or intuitive ways to understand the concepts
        5. Highlights common mistakes students make with this type of problem
        6. Suggests alternative solution approaches if applicable

        Make the explanation accessible to a student who is struggling with this topic.
        """
        response = model.generate_content(prompt, request_options={'timeout': 180})
        if not response.text: return "Error: Explanation generation returned an empty response."
        return response.text
    except Exception as e:
        print(f"Explanation Error: {e}")
        print(traceback.format_exc())
        return f"Error generating explanation: {str(e)}"


def generate_similar_problems(math_problem, classification):
    """Generate similar practice math problems (Original settings)"""
    if not math_problem or math_problem.startswith("Error:"): return "Error: Cannot generate problems due to invalid input text."
    if not isinstance(classification, dict) or classification.get("category") == "Error": return "Error: Cannot generate problems due to invalid classification data."
    try:
        print(f"Generating similar problems...")
        model = genai.GenerativeModel(
            model_name=SIMILAR_MODEL,
            generation_config={
                "temperature": 0.7,
                "top_p": 0.95,
                "max_output_tokens": 1000, # Original value
            }
        )
        
        classification_str = json.dumps(classification, indent=2)
        
        prompt = f"""
        Task: Generate similar practice math problems based on the following problem.

        ORIGINAL PROBLEM: {math_problem}
        CLASSIFICATION: {classification_str}

        Generate 3 similar practice problems that:
        1. Cover the same mathematical concepts and principles
        2. Vary in difficulty (one easier, one similar, one harder)
        3. Use different numerical values or variables
        4. Test the same underlying skills

        For each problem:
        - Provide the complete problem statement
        - Include a brief hint for solving it
        - Provide the correct answer (but not the full solution)

        Format as three separate problems with clear numbering.
        """
        response = model.generate_content(prompt, request_options={'timeout': 180})
        if not response.text: return "Error: Similar problems generation returned an empty response."
        return response.text
    except Exception as e:
        print(f"Similar Problems Error: {e}")
        print(traceback.format_exc())
        return f"Error generating similar problems: {str(e)}"



def process_image(image):
    """Main processing pipeline for the NerdAI app (No Tesseract, No Progress)"""
    start_time = time.time() # Keep start time
    try:
        if image is None:
            return None, "Error: No image uploaded.", "{}", "Error: No image uploaded.", "", "{}"

       
        print("πŸš€ Starting processing...")
        # time.sleep(0.5) # Removed sleep associated with progress update

       
        print("πŸ” Extracting text with Gemini...") 
        extracted_text = extract_text_with_gemini(image)

        if extracted_text.startswith("Error:"):
            print(f"Text extraction failed: {extracted_text}")
            
            img_display = None
            if image is not None:
                try:
                    img_display = image if isinstance(image, Image.Image) else Image.fromarray(image)
                except Exception: pass 
            return img_display, extracted_text, "{}", extracted_text, "", "{}"

        
        print(f"πŸ“Š Classifying problem ({CLASSIFICATION_MODEL})...") 
        classification = classify_with_gemini_flash(extracted_text) 
        classification_json = json.dumps(classification, indent=2)

       
        print(f"πŸ’‘ Solving problem ({SOLUTION_MODEL})...") 
        solution = solve_with_gemini_pro(extracted_text, classification) 

        end_time = time.time() # Keep end time
        print(f"βœ… Done in {end_time - start_time:.2f}s!") 

        
        img_display = image if isinstance(image, Image.Image) else Image.fromarray(image)
        return img_display, extracted_text, classification_json, solution, extracted_text, classification_json

    except Exception as e:
        print(f"Process Image Error: {e}")
        print(traceback.format_exc())
        error_message = f"An unexpected error occurred: {str(e)}"
        img_display = None
        if image is not None:
            try:
                 img_display = image if isinstance(image, Image.Image) else Image.fromarray(image)
            except Exception: pass
        return img_display, error_message, "{}", error_message, "", "{}"



css = """
body { font-family: 'Inter', sans-serif; }
.gradio-container { background-color: #f8f9fa; }

#title_markdown h1 { text-align: center; color: #4A90E2; font-weight: 600; margin-bottom: 0px; }
#subtitle_markdown p { text-align: center; color: #555; margin-top: 5px; margin-bottom: 20px; }
#input_col, #output_col { padding: 10px; }
#input_image, #processed_image { border-radius: 8px; border: 1px solid #dee2e6; overflow: hidden; height: 350px; object-fit: contain; }
#input_image div[data-testid="image"], #processed_image div[data-testid="image"] { height: 100%; }
#input_image img, #processed_image img { height: 100%; object-fit: contain; }
#process_button { margin-top: 15px; }
#results_group { border: 1px solid #e9ecef; border-radius: 8px; padding: 15px; background-color: #ffffff; box-shadow: 0 2px 4px rgba(0,0,0,0.05); margin-top: 20px; }
#extracted_text_output textarea, #classification_output textarea { background-color: #f1f3f4 !important; border-radius: 4px; margin-top: 10px; margin-bottom: 10px; }
#solution_output { margin-top: 15px; }
#action_buttons { margin-top: 15px; margin-bottom: 15px; }
.gradio-accordion > button { background-color: #eef2f6; border-radius: 5px 5px 0 0; font-weight: 500; }
.gradio-accordion .gradio-markdown { border: 1px solid #dee2e6; border-top: none; padding: 15px; border-radius: 0 0 5px 5px; background-color: #fff; }
footer { visibility: hidden }
"""


theme = gr_themes.Default(primary_hue=gr.themes.colors.blue, secondary_hue=gr.themes.colors.sky).set(
    button_primary_background_fill="#4A90E2", button_primary_background_fill_hover="#357ABD",
    button_secondary_background_fill="#E1E8ED", button_secondary_background_fill_hover="#CED9E0",
    block_radius="8px",
)


with gr.Blocks(theme=theme, css=css, title="NerdAI Math Solver") as demo:

    
    extracted_text_state = gr.State("")
    classification_state = gr.State("{}")

    
    gr.Markdown("# 🧠 NerdAI Math Problem Solver", elem_id="title_markdown")
    gr.Markdown("Upload a clear image of a math problem. NerdAI will extract the text, classify it, solve it step-by-step, and offer further help!", elem_id="subtitle_markdown")

    with gr.Row():
        with gr.Column(scale=1, elem_id="input_col"):
            input_image = gr.Image(label="Upload Math Problem", type="pil", elem_id="input_image", height=350)
            process_btn = gr.Button("✨ Process Image and Solve", variant="primary", elem_id="process_button")
        with gr.Column(scale=1, elem_id="output_col"):
            processed_image = gr.Image(label="Processed Image", interactive=False, elem_id="processed_image", height=350)

   
    with gr.Group(elem_id="results_group"):
        gr.Markdown("### Results")
        extracted_text_output = gr.Textbox(label="πŸ“ Extracted Text", lines=3, interactive=False, placeholder="Text from the image will appear here...", elem_id="extracted_text_output")
        classification_output = gr.Textbox(label=f"πŸ“Š Problem Classification ({CLASSIFICATION_MODEL})", lines=5, interactive=False, placeholder="Problem type analysis will appear here...", elem_id="classification_output")
        solution_output = gr.Markdown(label="βœ… Solution Steps", value="*Solution steps will appear here after processing...*", elem_id="solution_output")

   
    with gr.Row(elem_id="action_buttons"):
        explain_btn = gr.Button("πŸ€” Explain Further", variant="secondary")
        similar_btn = gr.Button("πŸ“š Similar Questions", variant="secondary")

    
    with gr.Accordion("Detailed Explanation", open=False):
        explanation_output = gr.Markdown(value="*Click 'Explain Further' above to get a detailed breakdown.*")
    with gr.Accordion("Similar Practice Problems", open=False):
        similar_problems_output = gr.Markdown(value="*Click 'Similar Questions' above to generate practice problems.*")

    
    process_btn.click(
        fn=process_image,
        inputs=[input_image],
        outputs=[
            processed_image, extracted_text_output, classification_output,
            solution_output, extracted_text_state, classification_state
        ],
    )

    
    def explain_button_handler(current_problem_text, current_solution_md):
        print("Explain button clicked.")
        
        if not current_problem_text or current_problem_text.startswith("Error:") : yield "Please process an image successfully first." ; return
        if not current_solution_md or current_solution_md.startswith("Error:") or "will appear here" in current_solution_md: yield "A valid solution needs to be generated first." ; return

        yield "*Generating detailed explanation... please wait.*" # Provide feedback
        explanation_result = explain_solution(current_problem_text, current_solution_md)
        yield explanation_result

    explain_btn.click(
        fn=explain_button_handler,
        inputs=[extracted_text_state, solution_output],
        outputs=explanation_output
    )

    
    def similar_button_handler(current_problem_text, current_classification_json):
        print("Similar button clicked.")
       
        if not current_problem_text or current_problem_text.startswith("Error:") : yield "Please process an image successfully first." ; return

        yield "*Generating similar problems... please wait.*" 
        classification_dict = {}
        try:
            if isinstance(current_classification_json, str) and current_classification_json.strip():
                 classification_dict = json.loads(current_classification_json)
            elif isinstance(current_classification_json, dict):
                 classification_dict = current_classification_json
            else: raise ValueError("Classification state is empty or not valid JSON/dict.")
            if not isinstance(classification_dict, dict): raise ValueError("Parsed classification is not a dictionary.")
            if classification_dict.get("category") == "Error": raise ValueError("Classification data indicates a previous error.")

        except (json.JSONDecodeError, ValueError, TypeError) as e:
            print(f"Error parsing/validating classification state: {e}")
            yield f"Error: Could not use classification data ({e}). Cannot generate similar problems."
            return 

        similar_result = generate_similar_problems(current_problem_text, classification_dict)
        yield similar_result

    similar_btn.click(
        fn=similar_button_handler,
        inputs=[extracted_text_state, classification_state],
        outputs=similar_problems_output
    )

    


if __name__ == "__main__":
    
    if not os.path.exists("examples"): os.makedirs("examples")
    for fname in ["algebra_problem.png", "calculus_problem.jpg", "geometry_problem.png"]:
        fpath = os.path.join("examples", fname)
        if not os.path.exists(fpath):
            try:
                img = Image.new('RGB', (200, 100), color = (73, 109, 137))
                from PIL import ImageDraw
                d = ImageDraw.Draw(img); d.text((10,10), f"Placeholder for\n{fname}", fill=(255,255,0)); img.save(fpath)
                print(f"Created placeholder example: {fpath}")
            except Exception as e: print(f"Could not create placeholder image {fpath}: {e}")

    
    demo.queue().launch(debug=True)