csuhan commited on
Commit
c29cd00
·
1 Parent(s): ba3bd20

Delete llama

Browse files
llama/__init__.py DELETED
@@ -1,6 +0,0 @@
1
- # Copyright (c) Meta Platforms, Inc. and affiliates.
2
- # This software may be used and distributed according to the terms of the GNU General Public License version 3.
3
-
4
- from .generation import LLaMA
5
- from .model import ModelArgs, Transformer, VisionModel
6
- from .tokenizer import Tokenizer
 
 
 
 
 
 
 
llama/__pycache__/__init__.cpython-38.pyc DELETED
Binary file (322 Bytes)
 
llama/__pycache__/generation.cpython-38.pyc DELETED
Binary file (2.84 kB)
 
llama/__pycache__/model.cpython-38.pyc DELETED
Binary file (14.2 kB)
 
llama/__pycache__/tokenizer.cpython-38.pyc DELETED
Binary file (1.46 kB)
 
llama/generation.py DELETED
@@ -1,85 +0,0 @@
1
- # Copyright (c) Meta Platforms, Inc. and affiliates.
2
- # This software may be used and distributed according to the terms of the GNU General Public License version 3.
3
-
4
- from typing import List
5
-
6
- import torch
7
-
8
- from llama.tokenizer import Tokenizer
9
- from llama.model import Transformer
10
-
11
-
12
- class LLaMA:
13
- def __init__(self, model: Transformer, tokenizer: Tokenizer, vision_model = None):
14
- self.model = model
15
- self.tokenizer = tokenizer
16
- self.vision_model = vision_model
17
-
18
- def generate(
19
- self,
20
- prompts: List[str],
21
- imgs = None,
22
- max_gen_len: int = 512,
23
- temperature: float = 0.8,
24
- top_p: float = 0.95,
25
- ) -> List[str]:
26
- bsz = len(prompts)
27
- params = self.model.params
28
- assert bsz <= params.max_batch_size, (bsz, params.max_batch_size)
29
-
30
- mode = 'instruct'
31
- vision_tokens = None
32
- if imgs is not None and self.vision_model is not None:
33
- vision_tokens = self.vision_model(imgs)
34
- mode = 'caption'
35
-
36
- prompt_tokens = [self.tokenizer.encode(x, bos=True, eos=False) for x in prompts]
37
-
38
- min_prompt_size = min([len(t) for t in prompt_tokens])
39
- max_prompt_size = max([len(t) for t in prompt_tokens])
40
-
41
- total_len = min(params.max_seq_len, max_gen_len + max_prompt_size)
42
-
43
- tokens = torch.full((bsz, total_len), self.tokenizer.pad_id).cuda().long()
44
- for k, t in enumerate(prompt_tokens):
45
- tokens[k, : len(t)] = torch.tensor(t).long()
46
- input_text_mask = tokens != self.tokenizer.pad_id
47
- start_pos = min_prompt_size
48
- prev_pos = 0
49
- for cur_pos in range(start_pos, total_len):
50
- logits = self.model.forward(tokens[:, prev_pos:cur_pos], prev_pos, vision_tokens, mode)
51
- if temperature > 0:
52
- probs = torch.softmax(logits / temperature, dim=-1)
53
- next_token = sample_top_p(probs, top_p)
54
- else:
55
- next_token = torch.argmax(logits, dim=-1)
56
- next_token = next_token.reshape(-1)
57
- # only replace token if prompt has already been generated
58
- next_token = torch.where(
59
- input_text_mask[:, cur_pos], tokens[:, cur_pos], next_token
60
- )
61
- tokens[:, cur_pos] = next_token
62
- prev_pos = cur_pos
63
-
64
- decoded = []
65
- for i, t in enumerate(tokens.tolist()):
66
- # cut to max gen len
67
- t = t[len(prompt_tokens[i]) : len(prompt_tokens[i]) + max_gen_len]
68
- # cut to eos tok if any
69
- try:
70
- t = t[: t.index(self.tokenizer.eos_id)]
71
- except ValueError:
72
- pass
73
- decoded.append(self.tokenizer.decode(t))
74
- return decoded
75
-
76
-
77
- def sample_top_p(probs, p):
78
- probs_sort, probs_idx = torch.sort(probs, dim=-1, descending=True)
79
- probs_sum = torch.cumsum(probs_sort, dim=-1)
80
- mask = probs_sum - probs_sort > p
81
- probs_sort[mask] = 0.0
82
- probs_sort.div_(probs_sort.sum(dim=-1, keepdim=True))
83
- next_token = torch.multinomial(probs_sort, num_samples=1)
84
- next_token = torch.gather(probs_idx, -1, next_token)
85
- return next_token
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
llama/model.py DELETED
@@ -1,423 +0,0 @@
1
- # Copyright (c) Meta Platforms, Inc. and affiliates.
2
- # This software may be used and distributed according to the terms of the GNU General Public License version 3.
3
-
4
- from typing import Optional, Tuple
5
- from dataclasses import dataclass
6
- import math
7
-
8
- import torch
9
- from torch import nn
10
- import torch.nn.functional as F
11
-
12
- import clip
13
- from timm.models.vision_transformer import Block
14
-
15
- import fairscale.nn.model_parallel.initialize as fs_init
16
- from fairscale.nn.model_parallel.layers import (
17
- ParallelEmbedding,
18
- RowParallelLinear,
19
- ColumnParallelLinear,
20
- )
21
-
22
- @dataclass
23
- class ModelArgs:
24
- dim: int = 512
25
- n_layers: int = 8
26
- n_heads: int = 8
27
- vocab_size: int = -1 # defined later by tokenizer
28
- multiple_of: int = 256 # make SwiGLU hidden layer size multiple of large power of 2
29
- norm_eps: float = 1e-5
30
-
31
- max_batch_size: int = 32
32
- max_seq_len: int = 2048
33
-
34
- adapter_len: int = 10
35
- adapter_layer: int = 30
36
-
37
- cap_adapter_len: int = 10
38
- cap_adapter_layer: int = 30
39
- cap_vision_model: str = "ViT-L/14"
40
- cap_vision_dim: int = 512
41
- cap_vision_block: int = 2
42
-
43
-
44
- class RMSNorm(torch.nn.Module):
45
- def __init__(self, dim: int, eps: float = 1e-6):
46
- super().__init__()
47
- self.eps = eps
48
- self.weight = nn.Parameter(torch.ones(dim))
49
-
50
- def _norm(self, x):
51
- return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
52
-
53
- def forward(self, x):
54
- output = self._norm(x.float()).type_as(x)
55
- return output * self.weight
56
-
57
-
58
- def precompute_freqs_cis(dim: int, end: int, theta: float = 10000.0):
59
- freqs = 1.0 / (theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim))
60
- t = torch.arange(end, device=freqs.device) # type: ignore
61
- freqs = torch.outer(t, freqs).float() # type: ignore
62
- freqs_cis = torch.polar(torch.ones_like(freqs), freqs) # complex64
63
- return freqs_cis
64
-
65
-
66
- def reshape_for_broadcast(freqs_cis: torch.Tensor, x: torch.Tensor):
67
- ndim = x.ndim
68
- assert 0 <= 1 < ndim
69
- assert freqs_cis.shape == (x.shape[1], x.shape[-1])
70
- shape = [d if i == 1 or i == ndim - 1 else 1 for i, d in enumerate(x.shape)]
71
- return freqs_cis.view(*shape)
72
-
73
-
74
- def apply_rotary_emb(
75
- xq: torch.Tensor,
76
- xk: torch.Tensor,
77
- freqs_cis: torch.Tensor,
78
- ) -> Tuple[torch.Tensor, torch.Tensor]:
79
- xq_ = torch.view_as_complex(xq.float().reshape(*xq.shape[:-1], -1, 2))
80
- xk_ = torch.view_as_complex(xk.float().reshape(*xk.shape[:-1], -1, 2))
81
- freqs_cis = reshape_for_broadcast(freqs_cis, xq_)
82
- xq_out = torch.view_as_real(xq_ * freqs_cis).flatten(3)
83
- xk_out = torch.view_as_real(xk_ * freqs_cis).flatten(3)
84
- return xq_out.type_as(xq), xk_out.type_as(xk)
85
-
86
-
87
- class Attention(nn.Module):
88
- def __init__(self, args: ModelArgs):
89
- super().__init__()
90
-
91
- self.n_local_heads = args.n_heads // fs_init.get_model_parallel_world_size()
92
- self.head_dim = args.dim // args.n_heads
93
-
94
- self.wq = ColumnParallelLinear(
95
- args.dim,
96
- args.n_heads * self.head_dim,
97
- bias=False,
98
- gather_output=False,
99
- init_method=lambda x: x,
100
- )
101
- self.wk = ColumnParallelLinear(
102
- args.dim,
103
- args.n_heads * self.head_dim,
104
- bias=False,
105
- gather_output=False,
106
- init_method=lambda x: x,
107
- )
108
- self.wv = ColumnParallelLinear(
109
- args.dim,
110
- args.n_heads * self.head_dim,
111
- bias=False,
112
- gather_output=False,
113
- init_method=lambda x: x,
114
- )
115
- self.wo = RowParallelLinear(
116
- args.n_heads * self.head_dim,
117
- args.dim,
118
- bias=False,
119
- input_is_parallel=True,
120
- init_method=lambda x: x,
121
- )
122
-
123
- self.cache_k = torch.zeros(
124
- (args.max_batch_size, args.max_seq_len, self.n_local_heads, self.head_dim)
125
- ).cuda()
126
- self.cache_v = torch.zeros(
127
- (args.max_batch_size, args.max_seq_len, self.n_local_heads, self.head_dim)
128
- ).cuda()
129
- self.gate = torch.nn.Parameter(torch.zeros(1))
130
-
131
- self.cap_gate = torch.nn.Parameter(torch.zeros(1, self.n_local_heads, 1, 1))
132
-
133
-
134
- def forward(self, x: torch.Tensor, start_pos: int, freqs_cis: torch.Tensor, mask: Optional[torch.Tensor], adapter=None, mode='instruct'):
135
- if mode == 'instruct':
136
- return self.forward_instruct(x, start_pos, freqs_cis, mask, adapter)
137
- elif mode == 'caption':
138
- return self.forward_caption(x, start_pos, freqs_cis, mask, adapter)
139
-
140
-
141
- def forward_instruct(self, x: torch.Tensor, start_pos: int, freqs_cis: torch.Tensor, mask: Optional[torch.Tensor], adapter=None):
142
- bsz, seqlen, _ = x.shape
143
- xq, xk, xv = self.wq(x), self.wk(x), self.wv(x)
144
-
145
- xq = xq.view(bsz, seqlen, self.n_local_heads, self.head_dim)
146
- xk = xk.view(bsz, seqlen, self.n_local_heads, self.head_dim)
147
- xv = xv.view(bsz, seqlen, self.n_local_heads, self.head_dim)
148
-
149
- xq, xk = apply_rotary_emb(xq, xk, freqs_cis=freqs_cis)
150
-
151
- self.cache_k = self.cache_k.to(xq)
152
- self.cache_v = self.cache_v.to(xq)
153
-
154
- self.cache_k[:bsz, start_pos : start_pos + seqlen] = xk
155
- self.cache_v[:bsz, start_pos : start_pos + seqlen] = xv
156
-
157
- keys = self.cache_k[:bsz, : start_pos + seqlen]
158
- values = self.cache_v[:bsz, : start_pos + seqlen]
159
-
160
- if adapter is not None:
161
- adapter_len = adapter.shape[1]
162
- adapter_k = self.wk(adapter).view(1, adapter_len, self.n_local_heads, self.head_dim).repeat(bsz, 1, 1, 1)
163
- adapter_v = self.wv(adapter).view(1, adapter_len, self.n_local_heads, self.head_dim).repeat(bsz, 1, 1, 1)
164
- adapter_k = adapter_k.transpose(1, 2)
165
- adapter_v = adapter_v.transpose(1, 2)
166
- xq = xq.transpose(1, 2)
167
- keys = keys.transpose(1, 2)
168
- values = values.transpose(1, 2)
169
- scores = torch.matmul(xq, keys.transpose(2, 3)) / math.sqrt(self.head_dim)
170
- if mask is not None:
171
- scores = scores + mask # (bs, n_local_heads, slen, cache_len + slen)
172
- scores = F.softmax(scores.float(), dim=-1).type_as(xq)
173
- output = torch.matmul(scores, values) # (bs, n_local_heads, slen, head_dim)
174
- if adapter is not None:
175
- adapter_scores = torch.matmul(xq, adapter_k.transpose(2, 3)) / math.sqrt(self.head_dim)
176
- adapter_scores = self.gate * F.softmax(adapter_scores.float(), dim=-1).type_as(xq)
177
- output = output + torch.matmul(adapter_scores, adapter_v)
178
- output = output.transpose(
179
- 1, 2
180
- ).contiguous().view(bsz, seqlen, -1)
181
-
182
- return self.wo(output)
183
-
184
-
185
- def forward_caption(self, x: torch.Tensor, start_pos: int, freqs_cis: torch.Tensor, mask: Optional[torch.Tensor], adapter=None):
186
- bsz, seqlen, _ = x.shape
187
- xq, xk, xv = self.wq(x), self.wk(x), self.wv(x)
188
-
189
- xq = xq.view(bsz, seqlen, self.n_local_heads, self.head_dim)
190
- xk = xk.view(bsz, seqlen, self.n_local_heads, self.head_dim)
191
- xv = xv.view(bsz, seqlen, self.n_local_heads, self.head_dim)
192
-
193
- xq, xk = apply_rotary_emb(xq, xk, freqs_cis=freqs_cis)
194
-
195
- self.cache_k = self.cache_k.to(xq)
196
- self.cache_v = self.cache_v.to(xq)
197
-
198
- self.cache_k[:bsz, start_pos : start_pos + seqlen] = xk
199
- self.cache_v[:bsz, start_pos : start_pos + seqlen] = xv
200
-
201
- keys = self.cache_k[:bsz, : start_pos + seqlen]
202
- values = self.cache_v[:bsz, : start_pos + seqlen]
203
-
204
- if adapter is not None:
205
- adapter_len = adapter.shape[1]
206
- adapter_k = self.wk(adapter).view(bsz, adapter_len, self.n_local_heads, self.head_dim)
207
- adapter_v = self.wv(adapter).view(bsz, adapter_len, self.n_local_heads, self.head_dim)
208
- adapter_k = adapter_k.transpose(1, 2)
209
- adapter_v = adapter_v.transpose(1, 2)
210
- xq = xq.transpose(1, 2)
211
- keys = keys.transpose(1, 2)
212
- values = values.transpose(1, 2)
213
- scores = torch.matmul(xq, keys.transpose(2, 3)) / math.sqrt(self.head_dim)
214
- if mask is not None:
215
- scores = scores + mask # (bs, n_local_heads, slen, cache_len + slen)
216
- scores = F.softmax(scores.float(), dim=-1).type_as(xq)
217
- output = torch.matmul(scores, values) # (bs, n_local_heads, slen, head_dim)
218
- if adapter is not None:
219
- adapter_scores = torch.matmul(xq, adapter_k.transpose(2, 3)) / math.sqrt(self.head_dim)
220
- adapter_scores = self.cap_gate.tanh() * F.softmax(adapter_scores.float(), dim=-1).type_as(xq)
221
-
222
- output = output + torch.matmul(adapter_scores, adapter_v)
223
- output = output.transpose(
224
- 1, 2
225
- ).contiguous().view(bsz, seqlen, -1)
226
-
227
- return self.wo(output)
228
-
229
-
230
-
231
- class FeedForward(nn.Module):
232
- def __init__(
233
- self,
234
- dim: int,
235
- hidden_dim: int,
236
- multiple_of: int,
237
- ):
238
- super().__init__()
239
- hidden_dim = int(2 * hidden_dim / 3)
240
- hidden_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
241
-
242
- self.w1 = ColumnParallelLinear(
243
- dim, hidden_dim, bias=False, gather_output=False, init_method=lambda x: x
244
- )
245
- self.w2 = RowParallelLinear(
246
- hidden_dim, dim, bias=False, input_is_parallel=True, init_method=lambda x: x
247
- )
248
- self.w3 = ColumnParallelLinear(
249
- dim, hidden_dim, bias=False, gather_output=False, init_method=lambda x: x
250
- )
251
-
252
- def forward(self, x):
253
- return self.w2(F.silu(self.w1(x)) * self.w3(x))
254
-
255
-
256
- class TransformerBlock(nn.Module):
257
- def __init__(self, layer_id: int, args: ModelArgs):
258
- super().__init__()
259
- self.n_heads = args.n_heads
260
- self.dim = args.dim
261
- self.head_dim = args.dim // args.n_heads
262
- self.attention = Attention(args)
263
- self.feed_forward = FeedForward(
264
- dim=args.dim, hidden_dim=4 * args.dim, multiple_of=args.multiple_of
265
- )
266
- self.layer_id = layer_id
267
- self.attention_norm = RMSNorm(args.dim, eps=args.norm_eps)
268
- self.ffn_norm = RMSNorm(args.dim, eps=args.norm_eps)
269
-
270
- def forward(self, x: torch.Tensor, start_pos: int, freqs_cis: torch.Tensor, mask: Optional[torch.Tensor], adapter=None, mode='instruct'):
271
- h = x + self.attention.forward(self.attention_norm(x), start_pos, freqs_cis, mask, adapter, mode=mode)
272
- out = h + self.feed_forward.forward(self.ffn_norm(h))
273
- return out
274
-
275
-
276
- class Transformer(nn.Module):
277
- def __init__(self, params: ModelArgs):
278
- super().__init__()
279
- self.params = params
280
- self.vocab_size = params.vocab_size
281
- self.n_layers = params.n_layers
282
-
283
- self.tok_embeddings = ParallelEmbedding(
284
- params.vocab_size, params.dim, init_method=lambda x: x
285
- )
286
-
287
- self.layers = torch.nn.ModuleList()
288
- for layer_id in range(params.n_layers):
289
- self.layers.append(TransformerBlock(layer_id, params))
290
-
291
- self.norm = RMSNorm(params.dim, eps=params.norm_eps)
292
- self.output = ColumnParallelLinear(
293
- params.dim, params.vocab_size, bias=False, init_method=lambda x: x
294
- )
295
-
296
- self.freqs_cis = precompute_freqs_cis(
297
- self.params.dim // self.params.n_heads, self.params.max_seq_len * 2
298
- )
299
-
300
- # Note: this is only a preview of multimodal LLaMA-Adapter
301
- # and requires more efforts to decouple LLaMA-Adapter from LLaMA.
302
- # instruct model
303
- self.adapter_query = nn.Embedding(params.adapter_len * params.adapter_layer, params.dim)
304
- self.adapter_len = params.adapter_len
305
- self.adapter_layer = params.adapter_layer
306
-
307
- # caption model
308
- self.cap_adapter_query = nn.Embedding(params.cap_adapter_len * params.cap_adapter_layer, params.dim)
309
- self.cap_adapter_len = params.cap_adapter_len
310
- self.cap_adapter_layer = params.cap_adapter_layer
311
-
312
- @torch.inference_mode()
313
- def forward(self, tokens: torch.Tensor, start_pos: int, visual_tokens: torch.Tensor = None, mode: str = 'instruct'):
314
- if mode == 'instruct':
315
- return self.forward_instruct(tokens, start_pos, mode)
316
- elif mode == 'caption':
317
- return self.forward_caption(tokens, start_pos, visual_tokens, mode)
318
-
319
- def forward_instruct(self, tokens: torch.Tensor, start_pos: int, mode=None):
320
- _bsz, seqlen = tokens.shape
321
- h = self.tok_embeddings(tokens)
322
- self.freqs_cis = self.freqs_cis.to(h.device)
323
- freqs_cis = self.freqs_cis[start_pos : start_pos + seqlen]
324
- adapter = self.adapter_query.weight.reshape(self.params.adapter_layer, self.params.adapter_len, self.params.dim).unsqueeze(1)
325
- mask = None
326
- if seqlen > 1:
327
- mask = torch.full((1, 1, seqlen, seqlen), float("-inf"), device=tokens.device)
328
- mask = torch.triu(mask, diagonal=start_pos + 1).type_as(h)
329
-
330
- for layer in self.layers[: -1 * self.params.adapter_layer]:
331
- h = layer(h, start_pos, freqs_cis, mask)
332
- layer_index = 0
333
- for layer in self.layers[-1 * self.params.adapter_layer:]:
334
- h = layer(h, start_pos, freqs_cis, mask, adapter[layer_index], mode=mode)
335
- layer_index = layer_index + 1
336
- h = self.norm(h)
337
- output = self.output(h[:, -1, :]) # only compute last logits
338
- return output.float()
339
-
340
- def forward_caption(self, tokens: torch.Tensor, start_pos: int, visual_tokens: torch.Tensor = None, mode=None):
341
- _bsz, seqlen = tokens.shape
342
- h = self.tok_embeddings(tokens)
343
- self.freqs_cis = self.freqs_cis.to(h.device)
344
- freqs_cis = self.freqs_cis[start_pos : start_pos + seqlen]
345
- adapter = self.cap_adapter_query.weight.reshape(self.params.cap_adapter_layer, self.params.cap_adapter_len, self.params.dim).unsqueeze(1)
346
- mask = None
347
- if seqlen > 1:
348
- mask = torch.full((1, 1, seqlen, seqlen), float("-inf"), device=tokens.device)
349
- mask = torch.triu(mask, diagonal=start_pos + 1).type_as(h)
350
-
351
- for layer in self.layers[: -1 * self.params.cap_adapter_layer]:
352
- h = layer(h, start_pos, freqs_cis, mask)
353
- layer_index = 0
354
- for layer in self.layers[-1 * self.params.cap_adapter_layer:]:
355
- adapter_per_layer = adapter[layer_index]
356
- if visual_tokens is not None:
357
- adapter_per_layer = adapter_per_layer + visual_tokens
358
- h = layer(h, start_pos, freqs_cis, mask, adapter_per_layer, mode=mode)
359
- layer_index = layer_index + 1
360
- h = self.norm(h)
361
- output = self.output(h[:, -1, :]) # only compute last logits
362
- return output.float()
363
-
364
-
365
-
366
- class VisionModel(nn.Module):
367
- def __init__(self, params: ModelArgs):
368
- super().__init__()
369
-
370
- self.params = params
371
-
372
- self.clip, self.clip_transform = clip.load(params.cap_vision_model)
373
- self.clip.float()
374
- for param in self.clip.parameters():
375
- param.requires_grad = False
376
-
377
- self.clip_proj = nn.Linear(self.clip.visual.output_dim, params.cap_vision_dim)
378
- self.clip_proj_norm = nn.LayerNorm(params.cap_vision_dim)
379
-
380
- self.visual_query = nn.Embedding(params.cap_adapter_len, params.cap_vision_dim)
381
-
382
- self.visual_blocks = nn.ModuleList([
383
- Block(params.cap_vision_dim, 16, 4, qkv_bias=True, qk_scale=None, norm_layer=nn.LayerNorm)
384
- for i in range(params.cap_vision_block)])
385
-
386
- self.visual_proj = nn.Linear(params.cap_vision_dim, params.dim)
387
- self.visual_proj_norm = nn.LayerNorm(params.dim)
388
-
389
- def clip_encode_image(self, x):
390
- x = self.clip.visual.conv1(x) # shape = [*, width, grid, grid]
391
- x = x.reshape(x.shape[0], x.shape[1], -1) # shape = [*, width, grid ** 2]
392
- x = x.permute(0, 2, 1) # shape = [*, grid ** 2, width]
393
- x = torch.cat([self.clip.visual.class_embedding.to(x.dtype) + torch.zeros(x.shape[0], 1, x.shape[-1], dtype=x.dtype, device=x.device), x], dim=1) # shape = [*, grid ** 2 + 1, width]
394
- x = x + self.clip.visual.positional_embedding.to(x.dtype)
395
- x = self.clip.visual.ln_pre(x)
396
-
397
- x = x.permute(1, 0, 2) # NLD -> LND
398
- x = self.clip.visual.transformer(x)
399
- x = x.permute(1, 0, 2) # LND -> NLD
400
-
401
- x = self.clip.visual.ln_post(x[:, :, :])
402
-
403
- if self.clip.visual.proj is not None:
404
- x = x @ self.clip.visual.proj
405
-
406
- return x
407
-
408
- def forward(self, imgs):
409
- x = [self.clip_transform(img) for img in imgs]
410
- x = torch.stack(x, dim=0).to(self.visual_query.weight.device)
411
- _bsz = x.shape[0]
412
-
413
- visual_feats = self.clip_encode_image(x).half()
414
- visual_feats = self.clip_proj_norm(self.clip_proj(visual_feats))
415
- visual_query = self.visual_query.weight.unsqueeze(0).repeat(_bsz, 1, 1)
416
- visual_query = torch.cat([visual_query, visual_feats], dim=1)
417
- for block in self.visual_blocks:
418
- visual_query = block(visual_query)
419
- visual_query = visual_query[:, :self.params.cap_adapter_len, :]
420
- visual_query = self.visual_proj(visual_query)
421
- visual_query = self.visual_proj_norm(visual_query)
422
-
423
- return visual_query
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
llama/tokenizer.py DELETED
@@ -1,40 +0,0 @@
1
- # Copyright (c) Meta Platforms, Inc. and affiliates.
2
- # This software may be used and distributed according to the terms of the GNU General Public License version 3.
3
-
4
- from sentencepiece import SentencePieceProcessor
5
- from logging import getLogger
6
- from typing import List
7
- import os
8
-
9
-
10
- logger = getLogger()
11
-
12
-
13
- class Tokenizer:
14
- def __init__(self, model_path: str):
15
- # reload tokenizer
16
- assert os.path.isfile(model_path), model_path
17
- self.sp_model = SentencePieceProcessor(model_file=model_path)
18
- logger.info(f"Reloaded SentencePiece model from {model_path}")
19
-
20
- # BOS / EOS token IDs
21
- self.n_words: int = self.sp_model.vocab_size()
22
- self.bos_id: int = self.sp_model.bos_id()
23
- self.eos_id: int = self.sp_model.eos_id()
24
- self.pad_id: int = self.sp_model.pad_id()
25
- logger.info(
26
- f"#words: {self.n_words} - BOS ID: {self.bos_id} - EOS ID: {self.eos_id}"
27
- )
28
- assert self.sp_model.vocab_size() == self.sp_model.get_piece_size()
29
-
30
- def encode(self, s: str, bos: bool, eos: bool) -> List[int]:
31
- assert type(s) is str
32
- t = self.sp_model.encode(s)
33
- if bos:
34
- t = [self.bos_id] + t
35
- if eos:
36
- t = t + [self.eos_id]
37
- return t
38
-
39
- def decode(self, t: List[int]) -> str:
40
- return self.sp_model.decode(t)