CrispChat / app.py
cstr's picture
Update app.py
0b1b904 verified
raw
history blame
123 kB
import os
import gradio as gr
import requests
import json
import base64
import logging
import io
import time
from typing import List, Dict, Any, Union, Tuple, Optional
from dotenv import load_dotenv
# Load environment variables from .env file
load_dotenv()
# Configure logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
# Gracefully import libraries with fallbacks
try:
from PIL import Image
HAS_PIL = True
except ImportError:
logger.warning("PIL not installed. Image processing will be limited.")
HAS_PIL = False
try:
import PyPDF2
HAS_PYPDF2 = True
except ImportError:
logger.warning("PyPDF2 not installed. PDF processing will be limited.")
HAS_PYPDF2 = False
try:
import markdown
HAS_MARKDOWN = True
except ImportError:
logger.warning("Markdown not installed. Markdown processing will be limited.")
HAS_MARKDOWN = False
try:
import openai
HAS_OPENAI = True
except ImportError:
logger.warning("OpenAI package not installed. OpenAI models will be unavailable.")
HAS_OPENAI = False
try:
from groq import Groq
HAS_GROQ = True
except ImportError:
logger.warning("Groq client not installed. Groq API will be unavailable.")
HAS_GROQ = False
try:
import cohere
HAS_COHERE = True
except ImportError:
logger.warning("Cohere package not installed. Cohere models will be unavailable.")
HAS_COHERE = False
try:
from huggingface_hub import InferenceClient
HAS_HF = True
except ImportError:
logger.warning("HuggingFace hub not installed. HuggingFace models will be limited.")
HAS_HF = False
# API keys from environment
OPENROUTER_API_KEY = os.environ.get("OPENROUTER_API_KEY", "")
OPENAI_API_KEY = os.environ.get("OPENAI_API_KEY", "")
GROQ_API_KEY = os.environ.get("GROQ_API_KEY", "")
COHERE_API_KEY = os.environ.get("COHERE_API_KEY", "")
HF_API_KEY = os.environ.get("HF_API_KEY", "")
TOGETHER_API_KEY = os.environ.get("TOGETHER_API_KEY", "")
GOOGLEAI_API_KEY = os.environ.get("GOOGLEAI_API_KEY", "")
# Print application startup message with timestamp
current_time = time.strftime("%Y-%m-%d %H:%M:%S")
print(f"===== Application Startup at {current_time} =====\n")
# ==========================================================
# MODEL DEFINITIONS
# ==========================================================
# OPENROUTER MODELS
# These are the original models from the provided code
OPENROUTER_MODELS = [
# 1M+ Context Models
{"category": "1M+ Context", "models": [
("Google: Gemini Pro 2.0 Experimental", "google/gemini-2.0-pro-exp-02-05:free", 2000000),
("Google: Gemini 2.0 Flash Thinking Experimental 01-21", "google/gemini-2.0-flash-thinking-exp:free", 1048576),
("Google: Gemini Flash 2.0 Experimental", "google/gemini-2.0-flash-exp:free", 1048576),
("Google: Gemini Pro 2.5 Experimental", "google/gemini-2.5-pro-exp-03-25:free", 1000000),
("Google: Gemini Flash 1.5 8B Experimental", "google/gemini-flash-1.5-8b-exp", 1000000),
]},
# 100K-1M Context Models
{"category": "100K+ Context", "models": [
("DeepSeek: DeepSeek R1 Zero", "deepseek/deepseek-r1-zero:free", 163840),
("DeepSeek: R1", "deepseek/deepseek-r1:free", 163840),
("DeepSeek: DeepSeek V3 Base", "deepseek/deepseek-v3-base:free", 131072),
("DeepSeek: DeepSeek V3 0324", "deepseek/deepseek-chat-v3-0324:free", 131072),
("Google: Gemma 3 4B", "google/gemma-3-4b-it:free", 131072),
("Google: Gemma 3 12B", "google/gemma-3-12b-it:free", 131072),
("Nous: DeepHermes 3 Llama 3 8B Preview", "nousresearch/deephermes-3-llama-3-8b-preview:free", 131072),
("Qwen: Qwen2.5 VL 72B Instruct", "qwen/qwen2.5-vl-72b-instruct:free", 131072),
("DeepSeek: DeepSeek V3", "deepseek/deepseek-chat:free", 131072),
("NVIDIA: Llama 3.1 Nemotron 70B Instruct", "nvidia/llama-3.1-nemotron-70b-instruct:free", 131072),
("Meta: Llama 3.2 1B Instruct", "meta-llama/llama-3.2-1b-instruct:free", 131072),
("Meta: Llama 3.2 11B Vision Instruct", "meta-llama/llama-3.2-11b-vision-instruct:free", 131072),
("Meta: Llama 3.1 8B Instruct", "meta-llama/llama-3.1-8b-instruct:free", 131072),
("Mistral: Mistral Nemo", "mistralai/mistral-nemo:free", 128000),
]},
# 64K-100K Context Models
{"category": "64K-100K Context", "models": [
("Mistral: Mistral Small 3.1 24B", "mistralai/mistral-small-3.1-24b-instruct:free", 96000),
("Google: Gemma 3 27B", "google/gemma-3-27b-it:free", 96000),
("Qwen: Qwen2.5 VL 3B Instruct", "qwen/qwen2.5-vl-3b-instruct:free", 64000),
("DeepSeek: R1 Distill Qwen 14B", "deepseek/deepseek-r1-distill-qwen-14b:free", 64000),
("Qwen: Qwen2.5-VL 7B Instruct", "qwen/qwen-2.5-vl-7b-instruct:free", 64000),
]},
# 32K-64K Context Models
{"category": "32K-64K Context", "models": [
("Google: LearnLM 1.5 Pro Experimental", "google/learnlm-1.5-pro-experimental:free", 40960),
("Qwen: QwQ 32B", "qwen/qwq-32b:free", 40000),
("Google: Gemini 2.0 Flash Thinking Experimental", "google/gemini-2.0-flash-thinking-exp-1219:free", 40000),
("Bytedance: UI-TARS 72B", "bytedance-research/ui-tars-72b:free", 32768),
("Qwerky 72b", "featherless/qwerky-72b:free", 32768),
("OlympicCoder 7B", "open-r1/olympiccoder-7b:free", 32768),
("OlympicCoder 32B", "open-r1/olympiccoder-32b:free", 32768),
("Google: Gemma 3 1B", "google/gemma-3-1b-it:free", 32768),
("Reka: Flash 3", "rekaai/reka-flash-3:free", 32768),
("Dolphin3.0 R1 Mistral 24B", "cognitivecomputations/dolphin3.0-r1-mistral-24b:free", 32768),
("Dolphin3.0 Mistral 24B", "cognitivecomputations/dolphin3.0-mistral-24b:free", 32768),
("Mistral: Mistral Small 3", "mistralai/mistral-small-24b-instruct-2501:free", 32768),
("Qwen2.5 Coder 32B Instruct", "qwen/qwen-2.5-coder-32b-instruct:free", 32768),
("Qwen2.5 72B Instruct", "qwen/qwen-2.5-72b-instruct:free", 32768),
]},
# 8K-32K Context Models
{"category": "8K-32K Context", "models": [
("Meta: Llama 3.2 3B Instruct", "meta-llama/llama-3.2-3b-instruct:free", 20000),
("Qwen: QwQ 32B Preview", "qwen/qwq-32b-preview:free", 16384),
("DeepSeek: R1 Distill Qwen 32B", "deepseek/deepseek-r1-distill-qwen-32b:free", 16000),
("Qwen: Qwen2.5 VL 32B Instruct", "qwen/qwen2.5-vl-32b-instruct:free", 8192),
("Moonshot AI: Moonlight 16B A3B Instruct", "moonshotai/moonlight-16b-a3b-instruct:free", 8192),
("DeepSeek: R1 Distill Llama 70B", "deepseek/deepseek-r1-distill-llama-70b:free", 8192),
("Qwen 2 7B Instruct", "qwen/qwen-2-7b-instruct:free", 8192),
("Google: Gemma 2 9B", "google/gemma-2-9b-it:free", 8192),
("Mistral: Mistral 7B Instruct", "mistralai/mistral-7b-instruct:free", 8192),
("Microsoft: Phi-3 Mini 128K Instruct", "microsoft/phi-3-mini-128k-instruct:free", 8192),
("Microsoft: Phi-3 Medium 128K Instruct", "microsoft/phi-3-medium-128k-instruct:free", 8192),
("Meta: Llama 3 8B Instruct", "meta-llama/llama-3-8b-instruct:free", 8192),
("OpenChat 3.5 7B", "openchat/openchat-7b:free", 8192),
("Meta: Llama 3.3 70B Instruct", "meta-llama/llama-3.3-70b-instruct:free", 8000),
]},
# <8K Context Models
{"category": "4K Context", "models": [
("AllenAI: Molmo 7B D", "allenai/molmo-7b-d:free", 4096),
("Rogue Rose 103B v0.2", "sophosympatheia/rogue-rose-103b-v0.2:free", 4096),
("Toppy M 7B", "undi95/toppy-m-7b:free", 4096),
("Hugging Face: Zephyr 7B", "huggingfaceh4/zephyr-7b-beta:free", 4096),
("MythoMax 13B", "gryphe/mythomax-l2-13b:free", 4096),
]},
# Vision-capable Models
{"category": "Vision Models", "models": [
("Google: Gemini Pro 2.0 Experimental", "google/gemini-2.0-pro-exp-02-05:free", 2000000),
("Google: Gemini 2.0 Flash Thinking Experimental 01-21", "google/gemini-2.0-flash-thinking-exp:free", 1048576),
("Google: Gemini Flash 2.0 Experimental", "google/gemini-2.0-flash-exp:free", 1048576),
("Google: Gemini Pro 2.5 Experimental", "google/gemini-2.5-pro-exp-03-25:free", 1000000),
("Google: Gemini Flash 1.5 8B Experimental", "google/gemini-flash-1.5-8b-exp", 1000000),
("Google: Gemma 3 4B", "google/gemma-3-4b-it:free", 131072),
("Google: Gemma 3 12B", "google/gemma-3-12b-it:free", 131072),
("Qwen: Qwen2.5 VL 72B Instruct", "qwen/qwen2.5-vl-72b-instruct:free", 131072),
("Meta: Llama 3.2 11B Vision Instruct", "meta-llama/llama-3.2-11b-vision-instruct:free", 131072),
("Mistral: Mistral Small 3.1 24B", "mistralai/mistral-small-3.1-24b-instruct:free", 96000),
("Google: Gemma 3 27B", "google/gemma-3-27b-it:free", 96000),
("Qwen: Qwen2.5 VL 3B Instruct", "qwen/qwen2.5-vl-3b-instruct:free", 64000),
("Qwen: Qwen2.5-VL 7B Instruct", "qwen/qwen-2.5-vl-7b-instruct:free", 64000),
("Google: LearnLM 1.5 Pro Experimental", "google/learnlm-1.5-pro-experimental:free", 40960),
("Google: Gemini 2.0 Flash Thinking Experimental", "google/gemini-2.0-flash-thinking-exp-1219:free", 40000),
("Bytedance: UI-TARS 72B", "bytedance-research/ui-tars-72b:free", 32768),
("Google: Gemma 3 1B", "google/gemma-3-1b-it:free", 32768),
("Qwen: Qwen2.5 VL 32B Instruct", "qwen/qwen2.5-vl-32b-instruct:free", 8192),
("AllenAI: Molmo 7B D", "allenai/molmo-7b-d:free", 4096),
]},
]
# Flatten OpenRouter model list for easier access
OPENROUTER_ALL_MODELS = []
for category in OPENROUTER_MODELS:
for model in category["models"]:
if model not in OPENROUTER_ALL_MODELS: # Avoid duplicates
OPENROUTER_ALL_MODELS.append(model)
# VISION MODELS - For tracking which models support images
VISION_MODELS = {
"OpenRouter": [model[0] for model in OPENROUTER_MODELS[-1]["models"]], # Last category is Vision Models
"OpenAI": [
"gpt-4-vision-preview", "gpt-4o", "gpt-4o-mini", "gpt-4-turbo",
"gpt-4-turbo-preview", "gpt-4-0125-preview", "gpt-4-1106-preview",
"o1-preview", "o1-mini"
],
"HuggingFace": [
"Qwen/Qwen2.5-VL-7B-Instruct", "Qwen/qwen2.5-vl-3b-instruct",
"Qwen/qwen2.5-vl-32b-instruct", "Qwen/qwen2.5-vl-72b-instruct"
],
"Groq": ["llama-3.2-11b-vision", "llama-3.2-90b-vision"],
"Together": ["Llama-3.2-11B-Vision-Instruct", "Llama-3.2-90B-Vision-Instruct"],
"OVH": ["llava-next-mistral-7b", "qwen2.5-vl-72b-instruct"],
"Cerebras": [],
"GoogleAI": ["gemini-1.5-pro", "gemini-1.0-pro", "gemini-1.5-flash", "gemini-2.0-pro", "gemini-2.5-pro"]
}
# OPENAI MODELS
OPENAI_MODELS = {
"gpt-3.5-turbo": 16385,
"gpt-3.5-turbo-0125": 16385,
"gpt-3.5-turbo-1106": 16385,
"gpt-3.5-turbo-instruct": 4096,
"gpt-4": 8192,
"gpt-4-0314": 8192,
"gpt-4-0613": 8192,
"gpt-4-turbo": 128000,
"gpt-4-turbo-2024-04-09": 128000,
"gpt-4-turbo-preview": 128000,
"gpt-4-0125-preview": 128000,
"gpt-4-1106-preview": 128000,
"gpt-4o": 128000,
"gpt-4o-2024-11-20": 128000,
"gpt-4o-2024-08-06": 128000,
"gpt-4o-2024-05-13": 128000,
"gpt-4o-mini": 128000,
"gpt-4o-mini-2024-07-18": 128000,
"o1-preview": 128000,
"o1-preview-2024-09-12": 128000,
"o1-mini": 128000,
"o1-mini-2024-09-12": 128000,
}
# HUGGINGFACE MODELS
HUGGINGFACE_MODELS = {
"microsoft/phi-3-mini-4k-instruct": 4096,
"microsoft/Phi-3-mini-128k-instruct": 131072,
"HuggingFaceH4/zephyr-7b-beta": 8192,
"deepseek-ai/DeepSeek-Coder-V2-Instruct": 8192,
"mistralai/Mistral-7B-Instruct-v0.3": 32768,
"NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO": 32768,
"microsoft/Phi-3.5-mini-instruct": 4096,
"google/gemma-2-2b-it": 2048,
"openai-community/gpt2": 1024,
"microsoft/phi-2": 2048,
"TinyLlama/TinyLlama-1.1B-Chat-v1.0": 2048,
"VAGOsolutions/Llama-3-SauerkrautLM-8b-Instruct": 2048,
"VAGOsolutions/Llama-3.1-SauerkrautLM-8b-Instruct": 4096,
"VAGOsolutions/SauerkrautLM-Nemo-12b-Instruct": 4096,
"openGPT-X/Teuken-7B-instruct-research-v0.4": 4096,
"Qwen/Qwen2.5-7B-Instruct": 131072,
"tiiuae/falcon-7b-instruct": 8192,
"Qwen/QwQ-32B-preview": 32768,
"Qwen/Qwen2.5-VL-7B-Instruct": 64000,
"Qwen/qwen2.5-vl-3b-instruct": 64000,
"Qwen/qwen2.5-vl-32b-instruct": 8192,
"Qwen/qwen2.5-vl-72b-instruct": 131072,
}
# GROQ MODELS - We'll populate this dynamically
DEFAULT_GROQ_MODELS = {
"deepseek-r1-distill-llama-70b": 8192,
"deepseek-r1-distill-qwen-32b": 8192,
"gemma2-9b-it": 8192,
"llama-3.1-8b-instant": 131072,
"llama-3.2-1b-preview": 131072,
"llama-3.2-3b-preview": 131072,
"llama-3.2-11b-vision-preview": 131072,
"llama-3.2-90b-vision-preview": 131072,
"llama-3.3-70b-specdec": 131072,
"llama-3.3-70b-versatile": 131072,
"llama-guard-3-8b": 8192,
"llama3-8b-8192": 8192,
"llama3-70b-8192": 8192,
"mistral-saba-24b": 32768,
"qwen-2.5-32b": 32768,
"qwen-2.5-coder-32b": 32768,
"qwen-qwq-32b": 32768,
"playai-tts": 4096, # Including TTS models but setting reasonable context limits
"playai-tts-arabic": 4096,
"distil-whisper-large-v3-en": 4096,
"whisper-large-v3": 4096,
"whisper-large-v3-turbo": 4096
}
# COHERE MODELS
COHERE_MODELS = {
"command-r-plus-08-2024": 131072,
"command-r-plus-04-2024": 131072,
"command-r-plus": 131072,
"command-r-08-2024": 131072,
"command-r-03-2024": 131072,
"command-r": 131072,
"command": 4096,
"command-nightly": 131072,
"command-light": 4096,
"command-light-nightly": 4096,
"c4ai-aya-expanse-8b": 8192,
"c4ai-aya-expanse-32b": 131072,
}
# TOGETHER MODELS
TOGETHER_MODELS = {
"meta-llama/Llama-3.1-70B-Instruct": 131072,
"meta-llama/Llama-3.1-8B-Instruct": 131072,
"meta-llama/Llama-3.3-70B-Instruct": 131072,
"deepseek-ai/deepseek-r1-distill-llama-70b": 8192,
"meta-llama/Llama-3.2-11B-Vision-Instruct": 131072,
"meta-llama/Llama-3.2-90B-Vision-Instruct": 131072,
}
# OVH MODELS - OVH AI Endpoints (free beta)
OVH_MODELS = {
"ovh/codestral-mamba-7b-v0.1": 131072,
"ovh/deepseek-r1-distill-llama-70b": 8192,
"ovh/llama-3.1-70b-instruct": 131072,
"ovh/llama-3.1-8b-instruct": 131072,
"ovh/llama-3.3-70b-instruct": 131072,
"ovh/llava-next-mistral-7b": 8192,
"ovh/mistral-7b-instruct-v0.3": 32768,
"ovh/mistral-nemo-2407": 131072,
"ovh/mixtral-8x7b-instruct": 32768,
"ovh/qwen2.5-coder-32b-instruct": 32768,
"ovh/qwen2.5-vl-72b-instruct": 131072,
}
# CEREBRAS MODELS
CEREBRAS_MODELS = {
"cerebras/llama-3.1-8b": 8192,
"cerebras/llama-3.3-70b": 8192,
}
# GOOGLE AI MODELS
GOOGLEAI_MODELS = {
"gemini-1.0-pro": 32768,
"gemini-1.5-flash": 1000000,
"gemini-1.5-pro": 1000000,
"gemini-2.0-pro": 2000000,
"gemini-2.5-pro": 2000000,
}
# Add all models with "vl", "vision", "visual" in their name to HF vision models
for model_name in list(HUGGINGFACE_MODELS.keys()):
if any(x in model_name.lower() for x in ["vl", "vision", "visual", "llava"]):
if model_name not in VISION_MODELS["HuggingFace"]:
VISION_MODELS["HuggingFace"].append(model_name)
# ==========================================================
# HELPER FUNCTIONS
# ==========================================================
def fetch_groq_models():
"""Fetch available Groq models with proper error handling"""
try:
if not HAS_GROQ or not GROQ_API_KEY:
logger.warning("Groq client not available or no API key. Using default model list.")
return DEFAULT_GROQ_MODELS
client = Groq(api_key=GROQ_API_KEY)
models = client.models.list()
# Create dictionary of model_id -> context size
model_dict = {}
for model in models.data:
model_id = model.id
# Map known context sizes or use a default
if "llama-3" in model_id and "70b" in model_id:
context_size = 131072
elif "llama-3" in model_id and "8b" in model_id:
context_size = 131072
elif "mixtral" in model_id:
context_size = 32768
elif "gemma" in model_id:
context_size = 8192
elif "vision" in model_id:
context_size = 131072
else:
context_size = 8192 # Default assumption
model_dict[model_id] = context_size
# Ensure we have models by combining with defaults
if not model_dict:
return DEFAULT_GROQ_MODELS
return {**DEFAULT_GROQ_MODELS, **model_dict}
except Exception as e:
logger.error(f"Error fetching Groq models: {e}")
return DEFAULT_GROQ_MODELS
# Initialize Groq models
GROQ_MODELS = fetch_groq_models()
def encode_image_to_base64(image_path):
"""Encode an image file to base64 string"""
try:
if isinstance(image_path, str): # File path as string
with open(image_path, "rb") as image_file:
encoded_string = base64.b64encode(image_file.read()).decode('utf-8')
file_extension = image_path.split('.')[-1].lower()
mime_type = f"image/{file_extension}"
if file_extension in ["jpg", "jpeg"]:
mime_type = "image/jpeg"
elif file_extension == "png":
mime_type = "image/png"
elif file_extension == "webp":
mime_type = "image/webp"
return f"data:{mime_type};base64,{encoded_string}"
elif hasattr(image_path, 'name'): # Handle Gradio file objects directly
with open(image_path.name, "rb") as image_file:
encoded_string = base64.b64encode(image_file.read()).decode('utf-8')
file_extension = image_path.name.split('.')[-1].lower()
mime_type = f"image/{file_extension}"
if file_extension in ["jpg", "jpeg"]:
mime_type = "image/jpeg"
elif file_extension == "png":
mime_type = "image/png"
elif file_extension == "webp":
mime_type = "image/webp"
return f"data:{mime_type};base64,{encoded_string}"
else: # Handle file object or other types
logger.error(f"Unsupported image type: {type(image_path)}")
return None
except Exception as e:
logger.error(f"Error encoding image: {str(e)}")
return None
def extract_text_from_file(file_path):
"""Extract text from various file types"""
try:
file_extension = file_path.split('.')[-1].lower()
if file_extension == 'pdf':
if HAS_PYPDF2:
text = ""
with open(file_path, 'rb') as file:
pdf_reader = PyPDF2.PdfReader(file)
for page_num in range(len(pdf_reader.pages)):
page = pdf_reader.pages[page_num]
text += page.extract_text() + "\n\n"
return text
else:
return "PDF processing is not available (PyPDF2 not installed)"
elif file_extension == 'md':
with open(file_path, 'r', encoding='utf-8') as file:
return file.read()
elif file_extension == 'txt':
with open(file_path, 'r', encoding='utf-8') as file:
return file.read()
else:
return f"Unsupported file type: {file_extension}"
except Exception as e:
logger.error(f"Error extracting text from file: {str(e)}")
return f"Error processing file: {str(e)}"
def prepare_message_with_media(text, images=None, documents=None):
"""Prepare a message with text, images, and document content"""
# If no media, return text only
if not images and not documents:
return text
# Start with text content
if documents and len(documents) > 0:
# If there are documents, append their content to the text
document_texts = []
for doc in documents:
if doc is None:
continue
# Make sure to handle file objects properly
doc_path = doc.name if hasattr(doc, 'name') else doc
doc_text = extract_text_from_file(doc_path)
if doc_text:
document_texts.append(doc_text)
# Add document content to text
if document_texts:
if not text:
text = "Please analyze these documents:"
else:
text = f"{text}\n\nDocument content:\n\n"
text += "\n\n".join(document_texts)
# If no images, return text only
if not images:
return text
# If we have images, create a multimodal content array
content = [{"type": "text", "text": text}]
# Add images if any
if images:
# Check if images is a list of image paths or file objects
if isinstance(images, list):
for img in images:
if img is None:
continue
encoded_image = encode_image_to_base64(img)
if encoded_image:
content.append({
"type": "image_url",
"image_url": {"url": encoded_image}
})
else:
# For single image or Gallery component
logger.warning(f"Images is not a list: {type(images)}")
# Try to handle as single image
encoded_image = encode_image_to_base64(images)
if encoded_image:
content.append({
"type": "image_url",
"image_url": {"url": encoded_image}
})
return content
def format_to_message_dict(history):
"""Convert history to proper message format"""
messages = []
for item in history:
if isinstance(item, dict) and "role" in item and "content" in item:
# Already in the correct format
messages.append(item)
elif isinstance(item, list) and len(item) == 2:
# Convert from old format [user_msg, ai_msg]
human, ai = item
if human:
messages.append({"role": "user", "content": human})
if ai:
messages.append({"role": "assistant", "content": ai})
return messages
def process_uploaded_images(files):
"""Process uploaded image files"""
file_paths = []
for file in files:
if hasattr(file, 'name'):
file_paths.append(file.name)
return file_paths
def filter_models(provider, search_term):
"""Filter models based on search term and provider"""
if provider == "OpenRouter":
all_models = [model[0] for model in OPENROUTER_ALL_MODELS]
elif provider == "OpenAI":
all_models = list(OPENAI_MODELS.keys())
elif provider == "HuggingFace":
all_models = list(HUGGINGFACE_MODELS.keys())
elif provider == "Groq":
all_models = list(GROQ_MODELS.keys())
elif provider == "Cohere":
all_models = list(COHERE_MODELS.keys())
elif provider == "Together":
all_models = list(TOGETHER_MODELS.keys())
elif provider == "OVH":
all_models = list(OVH_MODELS.keys())
elif provider == "Cerebras":
all_models = list(CEREBRAS_MODELS.keys())
elif provider == "GoogleAI":
all_models = list(GOOGLEAI_MODELS.keys())
else:
return [], None
if not search_term:
return all_models, all_models[0] if all_models else None
filtered_models = [model for model in all_models if search_term.lower() in model.lower()]
if filtered_models:
return filtered_models, filtered_models[0]
else:
return all_models, all_models[0] if all_models else None
def get_model_info(provider, model_choice):
"""Get model ID and context size based on provider and model name"""
if provider == "OpenRouter":
for name, model_id, ctx_size in OPENROUTER_ALL_MODELS:
if name == model_choice:
return model_id, ctx_size
elif provider == "OpenAI":
if model_choice in OPENAI_MODELS:
return model_choice, OPENAI_MODELS[model_choice]
elif provider == "HuggingFace":
if model_choice in HUGGINGFACE_MODELS:
return model_choice, HUGGINGFACE_MODELS[model_choice]
elif provider == "Groq":
if model_choice in GROQ_MODELS:
return model_choice, GROQ_MODELS[model_choice]
elif provider == "Cohere":
if model_choice in COHERE_MODELS:
return model_choice, COHERE_MODELS[model_choice]
elif provider == "Together":
if model_choice in TOGETHER_MODELS:
return model_choice, TOGETHER_MODELS[model_choice]
elif provider == "OVH":
if model_choice in OVH_MODELS:
return model_choice, OVH_MODELS[model_choice]
elif provider == "Cerebras":
if model_choice in CEREBRAS_MODELS:
return model_choice, CEREBRAS_MODELS[model_choice]
elif provider == "GoogleAI":
if model_choice in GOOGLEAI_MODELS:
return model_choice, GOOGLEAI_MODELS[model_choice]
return None, 0
def update_context_display(provider, model_name):
"""Update context size display for the selected model"""
_, ctx_size = get_model_info(provider, model_name)
return f"{ctx_size:,}" if ctx_size else "Unknown"
def is_vision_model(provider, model_name):
"""Check if a model supports vision/images"""
# Safety check for None model name
if model_name is None:
return False
if provider in VISION_MODELS:
if model_name in VISION_MODELS[provider]:
return True
# Also check for common vision indicators in model names
if any(x in model_name.lower() for x in ["vl", "vision", "visual", "llava", "gemini"]):
return True
return False
def update_model_info(provider, model_name):
"""Generate HTML info display for the selected model"""
model_id, ctx_size = get_model_info(provider, model_name)
if not model_id:
return "<p>Model information not available</p>"
# Check if this is a vision model
is_vision = is_vision_model(provider, model_name)
vision_badge = '<span style="background-color: #4CAF50; color: white; padding: 3px 6px; border-radius: 3px; font-size: 0.8em; margin-left: 5px;">Vision</span>' if is_vision else ''
# For OpenRouter, show the model ID
model_id_html = f"<p><strong>Model ID:</strong> {model_id}</p>" if provider == "OpenRouter" else ""
# For others, the ID is the same as the name
if provider != "OpenRouter":
model_id_html = ""
return f"""
<div class="model-info">
<h3>{model_name} {vision_badge}</h3>
{model_id_html}
<p><strong>Context Size:</strong> {ctx_size:,} tokens</p>
<p><strong>Provider:</strong> {provider}</p>
{f'<p><strong>Features:</strong> Supports image understanding</p>' if is_vision else ''}
</div>
"""
# ==========================================================
# API HANDLERS
# ==========================================================
def call_openrouter_api(payload, api_key_override=None):
"""Make a call to OpenRouter API with error handling"""
try:
api_key = api_key_override if api_key_override else OPENROUTER_API_KEY
if not api_key:
raise ValueError("OpenRouter API key is required")
response = requests.post(
"https://openrouter.ai/api/v1/chat/completions",
headers={
"Content-Type": "application/json",
"Authorization": f"Bearer {api_key}",
"HTTP-Referer": "https://huggingface.co/spaces/cstr/CrispChat"
},
json=payload,
timeout=180 # Longer timeout for document processing
)
return response
except requests.RequestException as e:
logger.error(f"OpenRouter API request error: {str(e)}")
raise e
def call_openai_api(payload, api_key_override=None):
"""Make a call to OpenAI API with error handling"""
try:
if not HAS_OPENAI:
raise ImportError("OpenAI package not installed")
api_key = api_key_override if api_key_override else OPENAI_API_KEY
if not api_key:
raise ValueError("OpenAI API key is required")
client = openai.OpenAI(api_key=api_key)
# Extract parameters from payload
model = payload.get("model", "gpt-3.5-turbo")
messages = payload.get("messages", [])
temperature = payload.get("temperature", 0.7)
max_tokens = payload.get("max_tokens", 1000)
stream = payload.get("stream", False)
top_p = payload.get("top_p", 0.9)
presence_penalty = payload.get("presence_penalty", 0)
frequency_penalty = payload.get("frequency_penalty", 0)
# Handle response format if specified
response_format = None
if payload.get("response_format") == "json_object":
response_format = {"type": "json_object"}
# Create completion
response = client.chat.completions.create(
model=model,
messages=messages,
temperature=temperature,
max_tokens=max_tokens,
stream=stream,
top_p=top_p,
presence_penalty=presence_penalty,
frequency_penalty=frequency_penalty,
response_format=response_format
)
return response
except Exception as e:
logger.error(f"OpenAI API error: {str(e)}")
raise e
def call_huggingface_api(payload, api_key_override=None):
"""Make a call to HuggingFace API with error handling"""
try:
if not HAS_HF:
raise ImportError("HuggingFace hub not installed")
api_key = api_key_override if api_key_override else HF_API_KEY
# Extract parameters from payload
model_id = payload.get("model", "mistralai/Mistral-7B-Instruct-v0.3")
messages = payload.get("messages", [])
temperature = payload.get("temperature", 0.7)
max_tokens = payload.get("max_tokens", 500)
# Create a prompt from messages
prompt = ""
for msg in messages:
role = msg["role"].upper()
content = msg["content"]
# Handle multimodal content
if isinstance(content, list):
text_parts = []
for item in content:
if item["type"] == "text":
text_parts.append(item["text"])
content = "\n".join(text_parts)
prompt += f"{role}: {content}\n"
prompt += "ASSISTANT: "
# Create client with or without API key
client = InferenceClient(token=api_key) if api_key else InferenceClient()
# Generate response
response = client.text_generation(
prompt,
model=model_id,
max_new_tokens=max_tokens,
temperature=temperature,
repetition_penalty=1.1
)
return {"generated_text": str(response)}
except Exception as e:
logger.error(f"HuggingFace API error: {str(e)}")
raise e
def call_groq_api(payload, api_key_override=None):
"""Make a call to Groq API with error handling"""
try:
if not HAS_GROQ:
raise ImportError("Groq client not installed")
api_key = api_key_override if api_key_override else GROQ_API_KEY
if not api_key:
raise ValueError("Groq API key is required")
client = Groq(api_key=api_key)
# Extract parameters from payload
model = payload.get("model", "llama-3.1-8b-instant")
messages = payload.get("messages", [])
temperature = payload.get("temperature", 0.7)
max_tokens = payload.get("max_tokens", 1000)
stream = payload.get("stream", False)
top_p = payload.get("top_p", 0.9)
# Create completion
response = client.chat.completions.create(
model=model,
messages=messages,
temperature=temperature,
max_tokens=max_tokens,
stream=stream,
top_p=top_p
)
return response
except Exception as e:
logger.error(f"Groq API error: {str(e)}")
raise e
def call_cohere_api(payload, api_key_override=None):
"""Make a call to Cohere API with error handling"""
try:
if not HAS_COHERE:
raise ImportError("Cohere package not installed")
api_key = api_key_override if api_key_override else COHERE_API_KEY
if not api_key:
raise ValueError("Cohere API key is required")
client = cohere.Client(api_key=api_key)
# Extract parameters from payload
model = payload.get("model", "command-r-plus")
messages = payload.get("messages", [])
temperature = payload.get("temperature", 0.7)
max_tokens = payload.get("max_tokens", 1000)
# Format messages for Cohere
chat_history = []
user_message = ""
for msg in messages:
if msg["role"] == "system":
# For system message, we'll prepend to the user's first message
system_content = msg["content"]
if isinstance(system_content, list): # Handle multimodal content
system_parts = []
for item in system_content:
if item["type"] == "text":
system_parts.append(item["text"])
system_content = "\n".join(system_parts)
user_message = f"System: {system_content}\n\n" + user_message
elif msg["role"] == "user":
content = msg["content"]
# Handle multimodal content
if isinstance(content, list):
text_parts = []
for item in content:
if item["type"] == "text":
text_parts.append(item["text"])
content = "\n".join(text_parts)
user_message = content
elif msg["role"] == "assistant":
content = msg["content"]
if content:
chat_history.append({"role": "ASSISTANT", "message": content})
# Create chat completion
response = client.chat(
message=user_message,
chat_history=chat_history,
model=model,
temperature=temperature,
max_tokens=max_tokens
)
return response
except Exception as e:
logger.error(f"Cohere API error: {str(e)}")
raise e
def call_together_api(payload, api_key_override=None):
"""Make a call to Together API with error handling"""
try:
if not HAS_OPENAI:
raise ImportError("OpenAI package not installed (required for Together API)")
api_key = api_key_override if api_key_override else TOGETHER_API_KEY
if not api_key:
raise ValueError("Together API key is required")
client = openai.OpenAI(
api_key=api_key,
base_url="https://api.together.xyz/v1"
)
# Extract parameters from payload
model = payload.get("model", "meta-llama/Llama-3.1-8B-Instruct")
messages = payload.get("messages", [])
temperature = payload.get("temperature", 0.7)
max_tokens = payload.get("max_tokens", 1000)
stream = payload.get("stream", False)
# Create completion
response = client.chat.completions.create(
model=model,
messages=messages,
temperature=temperature,
max_tokens=max_tokens,
stream=stream
)
return response
except Exception as e:
logger.error(f"Together API error: {str(e)}")
raise e
def call_ovh_api(payload, api_key_override=None):
"""Make a call to OVH AI Endpoints API with error handling"""
try:
# Use custom OpenAI client with the OVH endpoint
model = payload.get("model", "ovh/llama-3.1-8b-instruct")
messages = payload.get("messages", [])
temperature = payload.get("temperature", 0.7)
max_tokens = payload.get("max_tokens", 1000)
headers = {
"Content-Type": "application/json"
}
data = {
"model": model,
"messages": messages,
"temperature": temperature,
"max_tokens": max_tokens
}
response = requests.post(
"https://endpoints.ai.cloud.ovh.net/v1/chat/completions",
headers=headers,
json=data
)
if response.status_code != 200:
raise ValueError(f"OVH API returned status code {response.status_code}: {response.text}")
return response.json()
except Exception as e:
logger.error(f"OVH API error: {str(e)}")
raise e
def call_cerebras_api(payload, api_key_override=None):
"""Make a call to Cerebras API with error handling"""
try:
# Use vanilla requests for this API
model = payload.get("model", "cerebras/llama-3.1-8b")
messages = payload.get("messages", [])
temperature = payload.get("temperature", 0.7)
max_tokens = payload.get("max_tokens", 1000)
headers = {
"Content-Type": "application/json"
}
data = {
"model": model,
"messages": messages,
"temperature": temperature,
"max_tokens": max_tokens
}
response = requests.post(
"https://api.cloud.cerebras.ai/v1/chat/completions",
headers=headers,
json=data
)
if response.status_code != 200:
raise ValueError(f"Cerebras API returned status code {response.status_code}: {response.text}")
return response.json()
except Exception as e:
logger.error(f"Cerebras API error: {str(e)}")
raise e
def call_googleai_api(payload, api_key_override=None):
"""Make a call to Google AI (Gemini) API with error handling"""
try:
from google.generativeai import configure, GenerativeModel
api_key = api_key_override if api_key_override else GOOGLEAI_API_KEY
if not api_key:
raise ValueError("Google AI API key is required")
configure(api_key=api_key)
# Extract parameters from payload
model_name = payload.get("model", "gemini-1.5-pro")
messages = payload.get("messages", [])
temperature = payload.get("temperature", 0.7)
# Convert messages to Google AI format
google_messages = []
for msg in messages:
role = msg["role"]
content = msg["content"]
# Skip system messages for now (Gemini doesn't support them directly)
if role == "system":
continue
# Map user/assistant roles to Google's roles
gemini_role = "user" if role == "user" else "model"
# Process content (text or multimodal)
if isinstance(content, list):
# Multimodal content handling for Gemini
parts = []
for item in content:
if item["type"] == "text":
parts.append({"text": item["text"]})
elif item["type"] == "image_url":
image_data = item["image_url"]["url"]
if image_data.startswith("data:"):
# Extract base64 data
mime, base64_data = image_data.split(";base64,")
mime_type = mime.split(":")[1]
parts.append({
"inline_data": {
"mime_type": mime_type,
"data": base64_data
}
})
google_messages.append({"role": gemini_role, "parts": parts})
else:
# Simple text content
google_messages.append({"role": gemini_role, "parts": [{"text": content}]})
# Create Gemini model
model = GenerativeModel(model_name)
# Generate content
response = model.generate_content(
google_messages,
generation_config={
"temperature": temperature,
"max_output_tokens": payload.get("max_tokens", 1000),
"top_p": payload.get("top_p", 0.95),
}
)
# Convert response to standard format
return {
"choices": [
{
"message": {
"role": "assistant",
"content": response.text
}
}
]
}
except Exception as e:
logger.error(f"Google AI API error: {str(e)}")
raise e
def extract_ai_response(result, provider):
"""Extract AI response based on provider format"""
try:
if provider == "OpenRouter":
if isinstance(result, dict):
if "choices" in result and len(result["choices"]) > 0:
if "message" in result["choices"][0]:
message = result["choices"][0]["message"]
if message.get("reasoning") and not message.get("content"):
reasoning = message.get("reasoning")
lines = reasoning.strip().split('\n')
for line in lines:
if line and not line.startswith('I should') and not line.startswith('Let me'):
return line.strip()
for line in lines:
if line.strip():
return line.strip()
return message.get("content", "")
elif "delta" in result["choices"][0]:
return result["choices"][0]["delta"].get("content", "")
elif provider == "OpenAI":
if hasattr(result, "choices") and len(result.choices) > 0:
return result.choices[0].message.content
elif provider == "HuggingFace":
return result.get("generated_text", "")
elif provider == "Groq":
if hasattr(result, "choices") and len(result.choices) > 0:
return result.choices[0].message.content
elif provider == "Cohere":
if hasattr(result, "text"):
return result.text
elif provider == "Together":
if hasattr(result, "choices") and len(result.choices) > 0:
return result.choices[0].message.content
elif provider == "OVH":
if isinstance(result, dict) and "choices" in result and len(result["choices"]) > 0:
return result["choices"][0]["message"]["content"]
elif provider == "Cerebras":
if isinstance(result, dict) and "choices" in result and len(result["choices"]) > 0:
return result["choices"][0]["message"]["content"]
elif provider == "GoogleAI":
if isinstance(result, dict) and "choices" in result and len(result["choices"]) > 0:
return result["choices"][0]["message"]["content"]
logger.error(f"Unexpected response structure from {provider}: {result}")
return f"Error: Could not extract response from {provider} API result"
except Exception as e:
logger.error(f"Error extracting AI response: {str(e)}")
return f"Error: {str(e)}"
# ==========================================================
# STREAMING HANDLERS
# ==========================================================
def openrouter_streaming_handler(response, history, message):
"""Handle streaming responses from OpenRouter"""
try:
updated_history = history + [{"role": "user", "content": message}]
assistant_response = ""
for line in response.iter_lines():
if not line:
continue
line = line.decode('utf-8')
if not line.startswith('data: '):
continue
data = line[6:]
if data.strip() == '[DONE]':
break
try:
chunk = json.loads(data)
if "choices" in chunk and len(chunk["choices"]) > 0:
delta = chunk["choices"][0].get("delta", {})
if "content" in delta and delta["content"]:
# Update the current response
assistant_response += delta["content"]
yield updated_history + [{"role": "assistant", "content": assistant_response}]
except json.JSONDecodeError:
logger.error(f"Failed to parse JSON from chunk: {data}")
except Exception as e:
logger.error(f"Error in streaming handler: {str(e)}")
# Add error message to the current response
yield updated_history + [{"role": "assistant", "content": f"Error during streaming: {str(e)}"}]
def openai_streaming_handler(response, history, message):
"""Handle streaming responses from OpenAI"""
try:
updated_history = history + [{"role": "user", "content": message}]
assistant_response = ""
for chunk in response:
if hasattr(chunk.choices[0].delta, "content") and chunk.choices[0].delta.content is not None:
content = chunk.choices[0].delta.content
assistant_response += content
yield updated_history + [{"role": "assistant", "content": assistant_response}]
except Exception as e:
logger.error(f"Error in OpenAI streaming handler: {str(e)}")
# Add error message to the current response
yield updated_history + [{"role": "assistant", "content": f"Error during streaming: {str(e)}"}]
def groq_streaming_handler(response, history, message):
"""Handle streaming responses from Groq"""
try:
updated_history = history + [{"role": "user", "content": message}]
assistant_response = ""
for chunk in response:
if hasattr(chunk.choices[0].delta, "content") and chunk.choices[0].delta.content is not None:
content = chunk.choices[0].delta.content
assistant_response += content
yield updated_history + [{"role": "assistant", "content": assistant_response}]
except Exception as e:
logger.error(f"Error in Groq streaming handler: {str(e)}")
# Add error message to the current response
yield updated_history + [{"role": "assistant", "content": f"Error during streaming: {str(e)}"}]
def together_streaming_handler(response, history, message):
"""Handle streaming responses from Together"""
try:
updated_history = history + [{"role": "user", "content": message}]
assistant_response = ""
for chunk in response:
if hasattr(chunk.choices[0].delta, "content") and chunk.choices[0].delta.content is not None:
content = chunk.choices[0].delta.content
assistant_response += content
yield updated_history + [{"role": "assistant", "content": assistant_response}]
except Exception as e:
logger.error(f"Error in Together streaming handler: {str(e)}")
# Add error message to the current response
yield updated_history + [{"role": "assistant", "content": f"Error during streaming: {str(e)}"}]
# ==========================================================
# MAIN FUNCTION TO ASK AI
# ==========================================================
def ask_ai(message, history, provider, model_choice, temperature, max_tokens, top_p,
frequency_penalty, presence_penalty, repetition_penalty, top_k, min_p,
seed, top_a, stream_output, response_format, images, documents,
reasoning_effort, system_message, transforms, api_key_override=None):
"""Enhanced AI query function with support for multiple providers"""
# Validate input
if not message.strip() and not images and not documents:
return history
# Create messages from chat history for API requests
messages = format_to_message_dict(history)
# Add system message if provided
if system_message and system_message.strip():
# Remove any existing system message
messages = [msg for msg in messages if msg.get("role") != "system"]
# Add new system message at the beginning
messages.insert(0, {"role": "system", "content": system_message.strip()})
# Prepare message with images and documents if any
content = prepare_message_with_media(message, images, documents)
# Add current message to API messages
messages.append({"role": "user", "content": content})
# Common parameters for all providers
common_params = {
"temperature": temperature,
"max_tokens": max_tokens,
"top_p": top_p,
"frequency_penalty": frequency_penalty,
"presence_penalty": presence_penalty,
"stream": stream_output
}
try:
# Process based on provider
if provider == "OpenRouter":
# Get model ID from registry
model_id, _ = get_model_info(provider, model_choice)
if not model_id:
error_message = f"Error: Model '{model_choice}' not found in OpenRouter"
return history + [
{"role": "user", "content": message},
{"role": "assistant", "content": error_message}
]
# Build OpenRouter payload
payload = {
"model": model_id,
"messages": messages,
**common_params
}
# Add optional parameters if set
if repetition_penalty != 1.0:
payload["repetition_penalty"] = repetition_penalty
if top_k > 0:
payload["top_k"] = top_k
if min_p > 0:
payload["min_p"] = min_p
if seed > 0:
payload["seed"] = seed
if top_a > 0:
payload["top_a"] = top_a
# Add response format if JSON is requested
if response_format == "json_object":
payload["response_format"] = {"type": "json_object"}
# Add reasoning if selected
if reasoning_effort != "none":
payload["reasoning"] = {
"effort": reasoning_effort
}
# Add transforms if selected
if transforms:
payload["transforms"] = transforms
# Call OpenRouter API
logger.info(f"Sending request to OpenRouter model: {model_id}")
response = call_openrouter_api(payload, api_key_override)
# Handle streaming response
if stream_output and response.status_code == 200:
# Set up generator for streaming updates
def streaming_generator():
updated_history = history + [{"role": "user", "content": message}]
assistant_response = ""
for line in response.iter_lines():
if not line:
continue
line = line.decode('utf-8')
if not line.startswith('data: '):
continue
data = line[6:]
if data.strip() == '[DONE]':
break
try:
chunk = json.loads(data)
if "choices" in chunk and len(chunk["choices"]) > 0:
delta = chunk["choices"][0].get("delta", {})
if "content" in delta and delta["content"]:
# Update the current response
assistant_response += delta["content"]
# Return updated history with current response
yield updated_history + [{"role": "assistant", "content": assistant_response}]
except json.JSONDecodeError:
logger.error(f"Failed to parse JSON from chunk: {data}")
return streaming_generator()
# Handle normal response
elif response.status_code == 200:
result = response.json()
logger.info(f"Response content: {result}")
# Extract AI response
ai_response = extract_ai_response(result, provider)
# Add response to history with proper format
return history + [
{"role": "user", "content": message},
{"role": "assistant", "content": ai_response}
]
# Handle error response
else:
error_message = f"Error: Status code {response.status_code}"
try:
response_data = response.json()
error_message += f"\n\nDetails: {json.dumps(response_data, indent=2)}"
except:
error_message += f"\n\nResponse: {response.text}"
logger.error(error_message)
return history + [
{"role": "user", "content": message},
{"role": "assistant", "content": error_message}
]
elif provider == "OpenAI":
# Process OpenAI similarly as above...
# Get model ID from registry
model_id, _ = get_model_info(provider, model_choice)
if not model_id:
error_message = f"Error: Model '{model_choice}' not found in OpenAI"
return history + [
{"role": "user", "content": message},
{"role": "assistant", "content": error_message}
]
# Build OpenAI payload
payload = {
"model": model_id,
"messages": messages,
**common_params
}
# Add response format if JSON is requested
if response_format == "json_object":
payload["response_format"] = {"type": "json_object"}
# Call OpenAI API
logger.info(f"Sending request to OpenAI model: {model_id}")
try:
response = call_openai_api(payload, api_key_override)
# Handle streaming response
if stream_output:
# Set up generator for streaming updates
def streaming_generator():
updated_history = history + [{"role": "user", "content": message}]
assistant_response = ""
for chunk in response:
if hasattr(chunk.choices[0].delta, "content") and chunk.choices[0].delta.content is not None:
content = chunk.choices[0].delta.content
assistant_response += content
yield updated_history + [{"role": "assistant", "content": assistant_response}]
return streaming_generator()
# Handle normal response
else:
ai_response = extract_ai_response(response, provider)
return history + [
{"role": "user", "content": message},
{"role": "assistant", "content": ai_response}
]
except Exception as e:
error_message = f"OpenAI API Error: {str(e)}"
logger.error(error_message)
return history + [
{"role": "user", "content": message},
{"role": "assistant", "content": error_message}
]
elif provider == "HuggingFace":
model_id, _ = get_model_info(provider, model_choice)
if not model_id:
error_message = f"Error: Model '{model_choice}' not found in HuggingFace"
return history + [
{"role": "user", "content": message},
{"role": "assistant", "content": error_message}
]
# Build HuggingFace payload
payload = {
"model": model_id,
"messages": messages,
"temperature": temperature,
"max_tokens": max_tokens
}
# Call HuggingFace API
logger.info(f"Sending request to HuggingFace model: {model_id}")
try:
response = call_huggingface_api(payload, api_key_override)
# Extract response
ai_response = extract_ai_response(response, provider)
return history + [
{"role": "user", "content": message},
{"role": "assistant", "content": ai_response}
]
except Exception as e:
error_message = f"HuggingFace API Error: {str(e)}"
logger.error(error_message)
return history + [
{"role": "user", "content": message},
{"role": "assistant", "content": error_message}
]
elif provider == "Groq":
# Get model ID from registry
model_id, _ = get_model_info(provider, model_choice)
if not model_id:
error_message = f"Error: Model '{model_choice}' not found in Groq"
return history + [
{"role": "user", "content": message},
{"role": "assistant", "content": error_message}
]
# Build Groq payload
payload = {
"model": model_id,
"messages": messages,
"temperature": temperature,
"max_tokens": max_tokens,
"top_p": top_p,
"stream": stream_output
}
# Call Groq API
logger.info(f"Sending request to Groq model: {model_id}")
try:
response = call_groq_api(payload, api_key_override)
# Handle streaming response
if stream_output:
# Add message to history
updated_history = history + [{"role": "user", "content": message}]
# Set up generator for streaming updates
def streaming_generator():
assistant_response = ""
for chunk in response:
if hasattr(chunk.choices[0].delta, "content") and chunk.choices[0].delta.content is not None:
content = chunk.choices[0].delta.content
assistant_response += content
yield updated_history + [{"role": "assistant", "content": assistant_response}]
return streaming_generator()
# Handle normal response
else:
ai_response = extract_ai_response(response, provider)
return history + [
{"role": "user", "content": message},
{"role": "assistant", "content": ai_response}
]
except Exception as e:
error_message = f"Groq API Error: {str(e)}"
logger.error(error_message)
return history + [
{"role": "user", "content": message},
{"role": "assistant", "content": error_message}
]
elif provider == "Cohere":
# Get model ID from registry
model_id, _ = get_model_info(provider, model_choice)
if not model_id:
error_message = f"Error: Model '{model_choice}' not found in Cohere"
return history + [
{"role": "user", "content": message},
{"role": "assistant", "content": error_message}
]
# Build Cohere payload (doesn't support streaming the same way)
payload = {
"model": model_id,
"messages": messages,
"temperature": temperature,
"max_tokens": max_tokens
}
# Call Cohere API
logger.info(f"Sending request to Cohere model: {model_id}")
try:
response = call_cohere_api(payload, api_key_override)
# Extract response
ai_response = extract_ai_response(response, provider)
return history + [
{"role": "user", "content": message},
{"role": "assistant", "content": ai_response}
]
except Exception as e:
error_message = f"Cohere API Error: {str(e)}"
logger.error(error_message)
return history + [
{"role": "user", "content": message},
{"role": "assistant", "content": error_message}
]
elif provider == "Together":
# Get model ID from registry
model_id, _ = get_model_info(provider, model_choice)
if not model_id:
error_message = f"Error: Model '{model_choice}' not found in Together"
return history + [
{"role": "user", "content": message},
{"role": "assistant", "content": error_message}
]
# Build Together payload
payload = {
"model": model_id,
"messages": messages,
"temperature": temperature,
"max_tokens": max_tokens,
"stream": stream_output
}
# Call Together API
logger.info(f"Sending request to Together model: {model_id}")
try:
response = call_together_api(payload, api_key_override)
# Handle streaming response
if stream_output:
# Add message to history
updated_history = history + [{"role": "user", "content": message}]
# Set up generator for streaming updates
def streaming_generator():
assistant_response = ""
for chunk in response:
if hasattr(chunk.choices[0].delta, "content") and chunk.choices[0].delta.content is not None:
content = chunk.choices[0].delta.content
assistant_response += content
yield updated_history + [{"role": "assistant", "content": assistant_response}]
return streaming_generator()
# Handle normal response
else:
ai_response = extract_ai_response(response, provider)
return history + [
{"role": "user", "content": message},
{"role": "assistant", "content": ai_response}
]
except Exception as e:
error_message = f"Together API Error: {str(e)}"
logger.error(error_message)
return history + [
{"role": "user", "content": message},
{"role": "assistant", "content": error_message}
]
elif provider == "OVH":
# Get model ID from registry
model_id, _ = get_model_info(provider, model_choice)
if not model_id:
error_message = f"Error: Model '{model_choice}' not found in OVH"
return history + [
{"role": "user", "content": message},
{"role": "assistant", "content": error_message}
]
# Build OVH payload
payload = {
"model": model_id,
"messages": messages,
"temperature": temperature,
"max_tokens": max_tokens
}
# Call OVH API
logger.info(f"Sending request to OVH model: {model_id}")
try:
response = call_ovh_api(payload)
# Extract response
ai_response = extract_ai_response(response, provider)
return history + [
{"role": "user", "content": message},
{"role": "assistant", "content": ai_response}
]
except Exception as e:
error_message = f"OVH API Error: {str(e)}"
logger.error(error_message)
return history + [
{"role": "user", "content": message},
{"role": "assistant", "content": error_message}
]
elif provider == "Cerebras":
# Get model ID from registry
model_id, _ = get_model_info(provider, model_choice)
if not model_id:
error_message = f"Error: Model '{model_choice}' not found in Cerebras"
return history + [
{"role": "user", "content": message},
{"role": "assistant", "content": error_message}
]
# Build Cerebras payload
payload = {
"model": model_id,
"messages": messages,
"temperature": temperature,
"max_tokens": max_tokens
}
# Call Cerebras API
logger.info(f"Sending request to Cerebras model: {model_id}")
try:
response = call_cerebras_api(payload)
# Extract response
ai_response = extract_ai_response(response, provider)
return history + [
{"role": "user", "content": message},
{"role": "assistant", "content": ai_response}
]
except Exception as e:
error_message = f"Cerebras API Error: {str(e)}"
logger.error(error_message)
return history + [
{"role": "user", "content": message},
{"role": "assistant", "content": error_message}
]
elif provider == "GoogleAI":
# Get model ID from registry
model_id, _ = get_model_info(provider, model_choice)
if not model_id:
error_message = f"Error: Model '{model_choice}' not found in GoogleAI"
return history + [
{"role": "user", "content": message},
{"role": "assistant", "content": error_message}
]
# Build GoogleAI payload
payload = {
"model": model_id,
"messages": messages,
"temperature": temperature,
"max_tokens": max_tokens,
"top_p": top_p
}
# Call GoogleAI API
logger.info(f"Sending request to GoogleAI model: {model_id}")
try:
response = call_googleai_api(payload, api_key_override)
# Extract response
ai_response = extract_ai_response(response, provider)
return history + [
{"role": "user", "content": message},
{"role": "assistant", "content": ai_response}
]
except Exception as e:
error_message = f"GoogleAI API Error: {str(e)}"
logger.error(error_message)
return history + [
{"role": "user", "content": message},
{"role": "assistant", "content": error_message}
]
else:
error_message = f"Error: Unsupported provider '{provider}'"
return history + [
{"role": "user", "content": message},
{"role": "assistant", "content": error_message}
]
except Exception as e:
error_message = f"Error: {str(e)}"
logger.error(f"Exception during API call: {error_message}")
return history + [
{"role": "user", "content": message},
{"role": "assistant", "content": error_message}
]
def clear_chat():
"""Reset all inputs"""
return [], "", [], [], 0.7, 1000, 0.8, 0.0, 0.0, 1.0, 40, 0.1, 0, 0.0, False, "default", "none", "", []
# ==========================================================
# UI CREATION
# ==========================================================
def create_app():
"""Create the CrispChat Gradio application"""
with gr.Blocks(
title="CrispChat",
css="""
.context-size {
font-size: 0.9em;
color: #666;
margin-left: 10px;
}
footer { display: none !important; }
.model-selection-row {
display: flex;
align-items: center;
}
.parameter-grid {
display: grid;
grid-template-columns: 1fr 1fr;
gap: 10px;
}
.vision-badge {
background-color: #4CAF50;
color: white;
padding: 3px 6px;
border-radius: 3px;
font-size: 0.8em;
margin-left: 5px;
}
.provider-selection {
margin-bottom: 10px;
padding: 10px;
border-radius: 5px;
background-color: #f5f5f5;
}
"""
) as demo:
gr.Markdown("""
# 🤖 CrispChat
Chat with AI models from multiple providers: OpenRouter, OpenAI, HuggingFace, Groq, Cohere, Together, OVH, Cerebras, and Google AI.
""")
with gr.Row():
with gr.Column(scale=2):
# Chatbot interface
chatbot = gr.Chatbot(
height=500,
show_copy_button=True,
show_label=False,
avatar_images=(None, "https://upload.wikimedia.org/wikipedia/commons/0/04/ChatGPT_logo.svg"),
elem_id="chat-window",
type="messages" # use the new format
)
with gr.Row():
message = gr.Textbox(
placeholder="Type your message here...",
label="Message",
lines=2,
elem_id="message-input",
scale=4
)
with gr.Row():
with gr.Column(scale=3):
submit_btn = gr.Button("Send", variant="primary", elem_id="send-btn")
with gr.Column(scale=1):
clear_btn = gr.Button("Clear Chat", variant="secondary")
# Container for conditionally showing image upload
with gr.Row(visible=True) as image_upload_container:
# Image upload
with gr.Accordion("Upload Images (for vision models)", open=False):
images = gr.File(
label="Uploaded Images",
file_types=["image"],
file_count="multiple"
)
image_upload_btn = gr.UploadButton(
label="Upload Images",
file_types=["image"],
file_count="multiple"
)
# Document upload
with gr.Accordion("Upload Documents (PDF, MD, TXT)", open=False):
documents = gr.File(
label="Uploaded Documents",
file_types=[".pdf", ".md", ".txt"],
file_count="multiple"
)
with gr.Column(scale=1):
with gr.Group(elem_classes="provider-selection"):
gr.Markdown("### Provider Selection")
# Provider selection
provider_choice = gr.Radio(
choices=["OpenRouter", "OpenAI", "HuggingFace", "Groq", "Cohere", "Together", "OVH", "Cerebras", "GoogleAI"],
value="OpenRouter",
label="AI Provider"
)
# API key input with separate fields for each provider
with gr.Accordion("API Keys", open=False):
gr.Markdown("Enter API keys directly or set them as environment variables")
openrouter_api_key = gr.Textbox(
placeholder="Enter OpenRouter API key",
label="OpenRouter API Key",
type="password",
value=OPENROUTER_API_KEY if OPENROUTER_API_KEY else ""
)
openai_api_key = gr.Textbox(
placeholder="Enter OpenAI API key",
label="OpenAI API Key",
type="password",
value=OPENAI_API_KEY if OPENAI_API_KEY else ""
)
hf_api_key = gr.Textbox(
placeholder="Enter HuggingFace API key",
label="HuggingFace API Key",
type="password",
value=HF_API_KEY if HF_API_KEY else ""
)
groq_api_key = gr.Textbox(
placeholder="Enter Groq API key",
label="Groq API Key",
type="password",
value=GROQ_API_KEY if GROQ_API_KEY else ""
)
cohere_api_key = gr.Textbox(
placeholder="Enter Cohere API key",
label="Cohere API Key",
type="password",
value=COHERE_API_KEY if COHERE_API_KEY else ""
)
together_api_key = gr.Textbox(
placeholder="Enter Together API key",
label="Together API Key",
type="password",
value=TOGETHER_API_KEY if TOGETHER_API_KEY else ""
)
googleai_api_key = gr.Textbox(
placeholder="Enter Google AI API key",
label="Google AI API Key",
type="password",
value=GOOGLEAI_API_KEY if GOOGLEAI_API_KEY else ""
)
with gr.Group():
gr.Markdown("### Model Selection")
with gr.Row(elem_classes="model-selection-row"):
model_search = gr.Textbox(
placeholder="Search models...",
label="",
show_label=False
)
# Provider-specific model dropdowns
openrouter_model = gr.Dropdown(
choices=[model[0] for model in OPENROUTER_ALL_MODELS],
value=OPENROUTER_ALL_MODELS[0][0] if OPENROUTER_ALL_MODELS else None,
label="OpenRouter Model",
elem_id="openrouter-model-choice",
visible=True
)
openai_model = gr.Dropdown(
choices=list(OPENAI_MODELS.keys()),
value="gpt-3.5-turbo" if "gpt-3.5-turbo" in OPENAI_MODELS else None,
label="OpenAI Model",
elem_id="openai-model-choice",
visible=False
)
hf_model = gr.Dropdown(
choices=list(HUGGINGFACE_MODELS.keys()),
value="mistralai/Mistral-7B-Instruct-v0.3" if "mistralai/Mistral-7B-Instruct-v0.3" in HUGGINGFACE_MODELS else None,
label="HuggingFace Model",
elem_id="hf-model-choice",
visible=False
)
groq_model = gr.Dropdown(
choices=list(GROQ_MODELS.keys()),
value="llama-3.1-8b-instant" if "llama-3.1-8b-instant" in GROQ_MODELS else None,
label="Groq Model",
elem_id="groq-model-choice",
visible=False
)
cohere_model = gr.Dropdown(
choices=list(COHERE_MODELS.keys()),
value="command-r-plus" if "command-r-plus" in COHERE_MODELS else None,
label="Cohere Model",
elem_id="cohere-model-choice",
visible=False
)
together_model = gr.Dropdown(
choices=list(TOGETHER_MODELS.keys()),
value="meta-llama/Llama-3.1-8B-Instruct" if "meta-llama/Llama-3.1-8B-Instruct" in TOGETHER_MODELS else None,
label="Together Model",
elem_id="together-model-choice",
visible=False
)
ovh_model = gr.Dropdown(
choices=list(OVH_MODELS.keys()),
value="ovh/llama-3.1-8b-instruct" if "ovh/llama-3.1-8b-instruct" in OVH_MODELS else None,
label="OVH Model",
elem_id="ovh-model-choice",
visible=False
)
cerebras_model = gr.Dropdown(
choices=list(CEREBRAS_MODELS.keys()),
value="cerebras/llama-3.1-8b" if "cerebras/llama-3.1-8b" in CEREBRAS_MODELS else None,
label="Cerebras Model",
elem_id="cerebras-model-choice",
visible=False
)
googleai_model = gr.Dropdown(
choices=list(GOOGLEAI_MODELS.keys()),
value="gemini-1.5-pro" if "gemini-1.5-pro" in GOOGLEAI_MODELS else None,
label="Google AI Model",
elem_id="googleai-model-choice",
visible=False
)
context_display = gr.Textbox(
value=update_context_display("OpenRouter", OPENROUTER_ALL_MODELS[0][0]),
label="Context Size",
interactive=False,
elem_classes="context-size"
)
with gr.Accordion("Generation Parameters", open=False):
with gr.Group(elem_classes="parameter-grid"):
temperature = gr.Slider(
minimum=0.0,
maximum=2.0,
value=0.7,
step=0.1,
label="Temperature"
)
max_tokens = gr.Slider(
minimum=100,
maximum=4000,
value=1000,
step=100,
label="Max Tokens"
)
top_p = gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.8,
step=0.1,
label="Top P"
)
frequency_penalty = gr.Slider(
minimum=-2.0,
maximum=2.0,
value=0.0,
step=0.1,
label="Frequency Penalty"
)
presence_penalty = gr.Slider(
minimum=-2.0,
maximum=2.0,
value=0.0,
step=0.1,
label="Presence Penalty"
)
reasoning_effort = gr.Radio(
["none", "low", "medium", "high"],
value="none",
label="Reasoning Effort (OpenRouter)"
)
with gr.Accordion("Advanced Options", open=False):
with gr.Row():
with gr.Column():
repetition_penalty = gr.Slider(
minimum=0.1,
maximum=2.0,
value=1.0,
step=0.1,
label="Repetition Penalty"
)
top_k = gr.Slider(
minimum=1,
maximum=100,
value=40,
step=1,
label="Top K"
)
min_p = gr.Slider(
minimum=0.0,
maximum=1.0,
value=0.1,
step=0.05,
label="Min P"
)
with gr.Column():
seed = gr.Number(
value=0,
label="Seed (0 for random)",
precision=0
)
top_a = gr.Slider(
minimum=0.0,
maximum=1.0,
value=0.0,
step=0.05,
label="Top A"
)
stream_output = gr.Checkbox(
label="Stream Output",
value=False
)
with gr.Row():
response_format = gr.Radio(
["default", "json_object"],
value="default",
label="Response Format"
)
gr.Markdown("""
* **json_object**: Forces the model to respond with valid JSON only.
* Only available on certain models - check model support.
""")
# Custom instructing options
with gr.Accordion("Custom Instructions", open=False):
system_message = gr.Textbox(
placeholder="Enter a system message to guide the model's behavior...",
label="System Message",
lines=3
)
transforms = gr.CheckboxGroup(
["prompt_optimize", "prompt_distill", "prompt_compress"],
label="Prompt Transforms (OpenRouter specific)"
)
gr.Markdown("""
* **prompt_optimize**: Improve prompt for better responses.
* **prompt_distill**: Compress prompt to use fewer tokens without changing meaning.
* **prompt_compress**: Aggressively compress prompt to fit larger contexts.
""")
# Add a model information section
with gr.Accordion("About Selected Model", open=False):
model_info_display = gr.HTML(
value=update_model_info("OpenRouter", OPENROUTER_ALL_MODELS[0][0])
)
is_vision_indicator = gr.Checkbox(
label="Supports Images",
value=is_vision_model("OpenRouter", OPENROUTER_ALL_MODELS[0][0]),
interactive=False
)
# Add usage instructions
with gr.Accordion("Usage Instructions", open=False):
gr.Markdown("""
## Basic Usage
1. Type your message in the input box
2. Select a provider and model
3. Click "Send" or press Enter
## Working with Files
- **Images**: Upload images to use with vision-capable models
- **Documents**: Upload PDF, Markdown, or text files to analyze their content
## Provider Information
- **OpenRouter**: Free access to various models with context window sizes up to 2M tokens
- **OpenAI**: Requires an API key, includes GPT-3.5 and GPT-4 models
- **HuggingFace**: Direct access to open models, some models require API key
- **Groq**: High-performance inference, requires API key
- **Cohere**: Specialized in language understanding, requires API key
- **Together**: Access to high-quality open models, requires API key
- **OVH**: Free beta access to several models
- **Cerebras**: Free tier available with 8K context limit
- **GoogleAI**: Google's Gemini models, requires API key
## Advanced Parameters
- **Temperature**: Controls randomness (higher = more creative, lower = more deterministic)
- **Max Tokens**: Maximum length of the response
- **Top P**: Nucleus sampling threshold (higher = consider more tokens)
- **Reasoning Effort**: Some models can show their reasoning process (OpenRouter only)
""")
# Add a footer with version info
footer_md = gr.Markdown("""
---
### CrispChat v1.1
Built with ❤️ using Gradio and multiple AI provider APIs | Context sizes shown next to model names
""")
# Define event handlers
def toggle_model_dropdowns(provider):
"""Show/hide model dropdowns based on provider selection"""
return {
openrouter_model: gr.update(visible=(provider == "OpenRouter")),
openai_model: gr.update(visible=(provider == "OpenAI")),
hf_model: gr.update(visible=(provider == "HuggingFace")),
groq_model: gr.update(visible=(provider == "Groq")),
cohere_model: gr.update(visible=(provider == "Cohere")),
together_model: gr.update(visible=(provider == "Together")),
ovh_model: gr.update(visible=(provider == "OVH")),
cerebras_model: gr.update(visible=(provider == "Cerebras")),
googleai_model: gr.update(visible=(provider == "GoogleAI"))
}
def update_context_for_provider(provider, openrouter_model, openai_model, hf_model, groq_model, cohere_model, together_model, ovh_model, cerebras_model, googleai_model):
"""Update context display based on selected provider and model"""
if provider == "OpenRouter":
return update_context_display(provider, openrouter_model)
elif provider == "OpenAI":
return update_context_display(provider, openai_model)
elif provider == "HuggingFace":
return update_context_display(provider, hf_model)
elif provider == "Groq":
return update_context_display(provider, groq_model)
elif provider == "Cohere":
return update_context_display(provider, cohere_model)
elif provider == "Together":
return update_context_display(provider, together_model)
elif provider == "OVH":
return update_context_display(provider, ovh_model)
elif provider == "Cerebras":
return update_context_display(provider, cerebras_model)
elif provider == "GoogleAI":
return update_context_display(provider, googleai_model)
return "Unknown"
def update_model_info_for_provider(provider, openrouter_model, openai_model, hf_model, groq_model, cohere_model, together_model, ovh_model, cerebras_model, googleai_model):
"""Update model info based on selected provider and model"""
if provider == "OpenRouter":
return update_model_info(provider, openrouter_model)
elif provider == "OpenAI":
return update_model_info(provider, openai_model)
elif provider == "HuggingFace":
return update_model_info(provider, hf_model)
elif provider == "Groq":
return update_model_info(provider, groq_model)
elif provider == "Cohere":
return update_model_info(provider, cohere_model)
elif provider == "Together":
return update_model_info(provider, together_model)
elif provider == "OVH":
return update_model_info(provider, ovh_model)
elif provider == "Cerebras":
return update_model_info(provider, cerebras_model)
elif provider == "GoogleAI":
return update_model_info(provider, googleai_model)
return "<p>Model information not available</p>"
def update_vision_indicator(provider, model_choice):
"""Update the vision capability indicator"""
# Safety check for None model
if model_choice is None:
return False
return is_vision_model(provider, model_choice)
def update_image_upload_visibility(provider, model_choice):
"""Show/hide image upload based on model vision capabilities"""
# Safety check for None model
if model_choice is None:
return gr.update(visible=False)
is_vision = is_vision_model(provider, model_choice)
return gr.update(visible=is_vision)
# Search model function
def search_openrouter_models(search_term):
"""Filter OpenRouter models based on search term"""
all_models = [model[0] for model in OPENROUTER_ALL_MODELS]
if not search_term:
return gr.update(choices=all_models, value=all_models[0] if all_models else None)
filtered_models = [model for model in all_models if search_term.lower() in model.lower()]
if filtered_models:
return gr.update(choices=filtered_models, value=filtered_models[0])
else:
return gr.update(choices=all_models, value=all_models[0] if all_models else None)
def search_openai_models(search_term):
"""Filter OpenAI models based on search term"""
all_models = list(OPENAI_MODELS.keys())
if not search_term:
return gr.update(choices=all_models, value="gpt-3.5-turbo" if "gpt-3.5-turbo" in all_models else all_models[0] if all_models else None)
filtered_models = [model for model in all_models if search_term.lower() in model.lower()]
if filtered_models:
return gr.update(choices=filtered_models, value=filtered_models[0])
else:
return gr.update(choices=all_models, value="gpt-3.5-turbo" if "gpt-3.5-turbo" in all_models else all_models[0] if all_models else None)
def search_hf_models(search_term):
"""Filter HuggingFace models based on search term"""
all_models = list(HUGGINGFACE_MODELS.keys())
if not search_term:
default_model = "mistralai/Mistral-7B-Instruct-v0.3" if "mistralai/Mistral-7B-Instruct-v0.3" in all_models else all_models[0] if all_models else None
return gr.update(choices=all_models, value=default_model)
filtered_models = [model for model in all_models if search_term.lower() in model.lower()]
if filtered_models:
return gr.update(choices=filtered_models, value=filtered_models[0])
else:
default_model = "mistralai/Mistral-7B-Instruct-v0.3" if "mistralai/Mistral-7B-Instruct-v0.3" in all_models else all_models[0] if all_models else None
return gr.update(choices=all_models, value=default_model)
def search_groq_models(search_term):
"""Filter Groq models based on search term"""
all_models = list(GROQ_MODELS.keys())
if not search_term:
default_model = "llama-3.1-8b-instant" if "llama-3.1-8b-instant" in all_models else all_models[0] if all_models else None
return gr.update(choices=all_models, value=default_model)
filtered_models = [model for model in all_models if search_term.lower() in model.lower()]
if filtered_models:
return gr.update(choices=filtered_models, value=filtered_models[0])
else:
default_model = "llama-3.1-8b-instant" if "llama-3.1-8b-instant" in all_models else all_models[0] if all_models else None
return gr.update(choices=all_models, value=default_model)
def search_cohere_models(search_term):
"""Filter Cohere models based on search term"""
all_models = list(COHERE_MODELS.keys())
if not search_term:
default_model = "command-r-plus" if "command-r-plus" in all_models else all_models[0] if all_models else None
return gr.update(choices=all_models, value=default_model)
filtered_models = [model for model in all_models if search_term.lower() in model.lower()]
if filtered_models:
return gr.update(choices=filtered_models, value=filtered_models[0])
else:
default_model = "command-r-plus" if "command-r-plus" in all_models else all_models[0] if all_models else None
return gr.update(choices=all_models, value=default_model)
def search_together_models(search_term):
"""Filter Together models based on search term"""
all_models = list(TOGETHER_MODELS.keys())
if not search_term:
default_model = "meta-llama/Llama-3.1-8B-Instruct" if "meta-llama/Llama-3.1-8B-Instruct" in all_models else all_models[0] if all_models else None
return gr.update(choices=all_models, value=default_model)
filtered_models = [model for model in all_models if search_term.lower() in model.lower()]
if filtered_models:
return gr.update(choices=filtered_models, value=filtered_models[0])
else:
default_model = "meta-llama/Llama-3.1-8B-Instruct" if "meta-llama/Llama-3.1-8B-Instruct" in all_models else all_models[0] if all_models else None
return gr.update(choices=all_models, value=default_model)
def search_ovh_models(search_term):
"""Filter OVH models based on search term"""
all_models = list(OVH_MODELS.keys())
if not search_term:
default_model = "ovh/llama-3.1-8b-instruct" if "ovh/llama-3.1-8b-instruct" in all_models else all_models[0] if all_models else None
return gr.update(choices=all_models, value=default_model)
filtered_models = [model for model in all_models if search_term.lower() in model.lower()]
if filtered_models:
return gr.update(choices=filtered_models, value=filtered_models[0])
else:
default_model = "ovh/llama-3.1-8b-instruct" if "ovh/llama-3.1-8b-instruct" in all_models else all_models[0] if all_models else None
return gr.update(choices=all_models, value=default_model)
def search_cerebras_models(search_term):
"""Filter Cerebras models based on search term"""
all_models = list(CEREBRAS_MODELS.keys())
if not search_term:
default_model = "cerebras/llama-3.1-8b" if "cerebras/llama-3.1-8b" in all_models else all_models[0] if all_models else None
return gr.update(choices=all_models, value=default_model)
filtered_models = [model for model in all_models if search_term.lower() in model.lower()]
if filtered_models:
return gr.update(choices=filtered_models, value=filtered_models[0])
else:
default_model = "cerebras/llama-3.1-8b" if "cerebras/llama-3.1-8b" in all_models else all_models[0] if all_models else None
return gr.update(choices=all_models, value=default_model)
def search_googleai_models(search_term):
"""Filter GoogleAI models based on search term"""
all_models = list(GOOGLEAI_MODELS.keys())
if not search_term:
default_model = "gemini-1.5-pro" if "gemini-1.5-pro" in all_models else all_models[0] if all_models else None
return gr.update(choices=all_models, value=default_model)
filtered_models = [model for model in all_models if search_term.lower() in model.lower()]
if filtered_models:
return gr.update(choices=filtered_models, value=filtered_models[0])
else:
default_model = "gemini-1.5-pro" if "gemini-1.5-pro" in all_models else all_models[0] if all_models else None
return gr.update(choices=all_models, value=default_model)
def get_current_model(provider, openrouter_model, openai_model, hf_model, groq_model, cohere_model, together_model, ovh_model, cerebras_model, googleai_model):
"""Get the currently selected model based on provider"""
if provider == "OpenRouter":
return openrouter_model if openrouter_model else OPENROUTER_ALL_MODELS[0][0] if OPENROUTER_ALL_MODELS else None
elif provider == "OpenAI":
return openai_model if openai_model else "gpt-3.5-turbo" if "gpt-3.5-turbo" in OPENAI_MODELS else None
elif provider == "HuggingFace":
return hf_model if hf_model else "mistralai/Mistral-7B-Instruct-v0.3" if "mistralai/Mistral-7B-Instruct-v0.3" in HUGGINGFACE_MODELS else None
elif provider == "Groq":
return groq_model if groq_model else "llama-3.1-8b-instant" if "llama-3.1-8b-instant" in GROQ_MODELS else None
elif provider == "Cohere":
return cohere_model if cohere_model else "command-r-plus" if "command-r-plus" in COHERE_MODELS else None
elif provider == "Together":
return together_model if together_model else "meta-llama/Llama-3.1-8B-Instruct" if "meta-llama/Llama-3.1-8B-Instruct" in TOGETHER_MODELS else None
elif provider == "OVH":
return ovh_model if ovh_model else "ovh/llama-3.1-8b-instruct" if "ovh/llama-3.1-8b-instruct" in OVH_MODELS else None
elif provider == "Cerebras":
return cerebras_model if cerebras_model else "cerebras/llama-3.1-8b" if "cerebras/llama-3.1-8b" in CEREBRAS_MODELS else None
elif provider == "GoogleAI":
return googleai_model if googleai_model else "gemini-1.5-pro" if "gemini-1.5-pro" in GOOGLEAI_MODELS else None
return None
# Process uploaded images
image_upload_btn.upload(
fn=lambda files: files,
inputs=image_upload_btn,
outputs=images
)
# Set up provider selection event
provider_choice.change(
fn=toggle_model_dropdowns,
inputs=provider_choice,
outputs=[
openrouter_model,
openai_model,
hf_model,
groq_model,
cohere_model,
together_model,
ovh_model,
cerebras_model,
googleai_model
]
).then(
fn=update_context_for_provider,
inputs=[provider_choice, openrouter_model, openai_model, hf_model, groq_model, cohere_model, together_model, ovh_model, cerebras_model, googleai_model],
outputs=context_display
).then(
fn=update_model_info_for_provider,
inputs=[provider_choice, openrouter_model, openai_model, hf_model, groq_model, cohere_model, together_model, ovh_model, cerebras_model, googleai_model],
outputs=model_info_display
).then(
fn=lambda provider, model: update_vision_indicator(
provider,
get_current_model(provider, model, None, None, None, None, None, None, None, None)
),
inputs=[provider_choice, openrouter_model],
outputs=is_vision_indicator
).then(
fn=lambda provider, model: update_image_upload_visibility(
provider,
get_current_model(provider, model, None, None, None, None, None, None, None, None)
),
inputs=[provider_choice, openrouter_model],
outputs=image_upload_container
)
# Set up model search event - return model dropdown updates
model_search.change(
fn=lambda provider, search: [
search_openrouter_models(search) if provider == "OpenRouter" else gr.update(),
search_openai_models(search) if provider == "OpenAI" else gr.update(),
search_hf_models(search) if provider == "HuggingFace" else gr.update(),
search_groq_models(search) if provider == "Groq" else gr.update(),
search_cohere_models(search) if provider == "Cohere" else gr.update(),
search_together_models(search) if provider == "Together" else gr.update(),
search_ovh_models(search) if provider == "OVH" else gr.update(),
search_cerebras_models(search) if provider == "Cerebras" else gr.update(),
search_googleai_models(search) if provider == "GoogleAI" else gr.update()
],
inputs=[provider_choice, model_search],
outputs=[
openrouter_model, openai_model, hf_model, groq_model,
cohere_model, together_model, ovh_model, cerebras_model, googleai_model
]
)
# Set up model change events to update context display and model info
openrouter_model.change(
fn=lambda model: update_context_display("OpenRouter", model),
inputs=openrouter_model,
outputs=context_display
).then(
fn=lambda model: update_model_info("OpenRouter", model),
inputs=openrouter_model,
outputs=model_info_display
).then(
fn=lambda model: update_vision_indicator("OpenRouter", model),
inputs=openrouter_model,
outputs=is_vision_indicator
).then(
fn=lambda model: update_image_upload_visibility("OpenRouter", model),
inputs=openrouter_model,
outputs=image_upload_container
)
openai_model.change(
fn=lambda model: update_context_display("OpenAI", model),
inputs=openai_model,
outputs=context_display
).then(
fn=lambda model: update_model_info("OpenAI", model),
inputs=openai_model,
outputs=model_info_display
).then(
fn=lambda model: update_vision_indicator("OpenAI", model),
inputs=openai_model,
outputs=is_vision_indicator
).then(
fn=lambda model: update_image_upload_visibility("OpenAI", model),
inputs=openai_model,
outputs=image_upload_container
)
hf_model.change(
fn=lambda model: update_context_display("HuggingFace", model),
inputs=hf_model,
outputs=context_display
).then(
fn=lambda model: update_model_info("HuggingFace", model),
inputs=hf_model,
outputs=model_info_display
).then(
fn=lambda model: update_vision_indicator("HuggingFace", model),
inputs=hf_model,
outputs=is_vision_indicator
).then(
fn=lambda model: update_image_upload_visibility("HuggingFace", model),
inputs=hf_model,
outputs=image_upload_container
)
groq_model.change(
fn=lambda model: update_context_display("Groq", model),
inputs=groq_model,
outputs=context_display
).then(
fn=lambda model: update_model_info("Groq", model),
inputs=groq_model,
outputs=model_info_display
).then(
fn=lambda model: update_vision_indicator("Groq", model),
inputs=groq_model,
outputs=is_vision_indicator
).then(
fn=lambda model: update_image_upload_visibility("Groq", model),
inputs=groq_model,
outputs=image_upload_container
)
cohere_model.change(
fn=lambda model: update_context_display("Cohere", model),
inputs=cohere_model,
outputs=context_display
).then(
fn=lambda model: update_model_info("Cohere", model),
inputs=cohere_model,
outputs=model_info_display
).then(
fn=lambda model: update_vision_indicator("Cohere", model),
inputs=cohere_model,
outputs=is_vision_indicator
).then(
fn=lambda model: update_image_upload_visibility("Cohere", model),
inputs=cohere_model,
outputs=image_upload_container
)
together_model.change(
fn=lambda model: update_context_display("Together", model),
inputs=together_model,
outputs=context_display
).then(
fn=lambda model: update_model_info("Together", model),
inputs=together_model,
outputs=model_info_display
).then(
fn=lambda model: update_vision_indicator("Together", model),
inputs=together_model,
outputs=is_vision_indicator
).then(
fn=lambda model: update_image_upload_visibility("Together", model),
inputs=together_model,
outputs=image_upload_container
)
ovh_model.change(
fn=lambda model: update_context_display("OVH", model),
inputs=ovh_model,
outputs=context_display
).then(
fn=lambda model: update_model_info("OVH", model),
inputs=ovh_model,
outputs=model_info_display
).then(
fn=lambda model: update_vision_indicator("OVH", model),
inputs=ovh_model,
outputs=is_vision_indicator
).then(
fn=lambda model: update_image_upload_visibility("OVH", model),
inputs=ovh_model,
outputs=image_upload_container
)
cerebras_model.change(
fn=lambda model: update_context_display("Cerebras", model),
inputs=cerebras_model,
outputs=context_display
).then(
fn=lambda model: update_model_info("Cerebras", model),
inputs=cerebras_model,
outputs=model_info_display
).then(
fn=lambda model: update_vision_indicator("Cerebras", model),
inputs=cerebras_model,
outputs=is_vision_indicator
).then(
fn=lambda model: update_image_upload_visibility("Cerebras", model),
inputs=cerebras_model,
outputs=image_upload_container
)
googleai_model.change(
fn=lambda model: update_context_display("GoogleAI", model),
inputs=googleai_model,
outputs=context_display
).then(
fn=lambda model: update_model_info("GoogleAI", model),
inputs=googleai_model,
outputs=model_info_display
).then(
fn=lambda model: update_vision_indicator("GoogleAI", model),
inputs=googleai_model,
outputs=is_vision_indicator
).then(
fn=lambda model: update_image_upload_visibility("GoogleAI", model),
inputs=googleai_model,
outputs=image_upload_container
)
def handle_search(provider, search_term):
"""Handle search based on provider"""
if provider == "OpenRouter":
return search_openrouter_models(search_term)
elif provider == "OpenAI":
return search_openai_models(search_term)
elif provider == "HuggingFace":
return search_hf_models(search_term)
elif provider == "Groq":
return search_groq_models(search_term)
elif provider == "Cohere":
return search_cohere_models(search_term)
elif provider == "Together":
return search_together_models(search_term)
elif provider == "OVH":
return search_ovh_models(search_term)
elif provider == "Cerebras":
return search_cerebras_models(search_term)
elif provider == "GoogleAI":
return search_googleai_models(search_term)
return None
# Set up submission event
def submit_message(message, history, provider, openrouter_model, openai_model, hf_model, groq_model, cohere_model,
together_model, ovh_model, cerebras_model, googleai_model,
temperature, max_tokens, top_p, frequency_penalty, presence_penalty, repetition_penalty,
top_k, min_p, seed, top_a, stream_output, response_format,
images, documents, reasoning_effort, system_message, transforms,
openrouter_api_key, openai_api_key, hf_api_key, groq_api_key, cohere_api_key, together_api_key, googleai_api_key):
"""Submit message to selected provider and model"""
# Get the currently selected model
model_choice = get_current_model(provider, openrouter_model, openai_model, hf_model, groq_model, cohere_model,
together_model, ovh_model, cerebras_model, googleai_model)
# Check if model is selected
if not model_choice:
error_message = f"Error: No model selected for provider {provider}"
return history + [
{"role": "user", "content": message},
{"role": "assistant", "content": error_message}
]
# Select the appropriate API key based on the provider
api_key_override = None
if provider == "OpenRouter" and openrouter_api_key:
api_key_override = openrouter_api_key
elif provider == "OpenAI" and openai_api_key:
api_key_override = openai_api_key
elif provider == "HuggingFace" and hf_api_key:
api_key_override = hf_api_key
elif provider == "Groq" and groq_api_key:
api_key_override = groq_api_key
elif provider == "Cohere" and cohere_api_key:
api_key_override = cohere_api_key
elif provider == "Together" and together_api_key:
api_key_override = together_api_key
elif provider == "GoogleAI" and googleai_api_key:
api_key_override = googleai_api_key
# Call the ask_ai function with the appropriate parameters
return ask_ai(
message=message,
history=history,
provider=provider,
model_choice=model_choice,
temperature=temperature,
max_tokens=max_tokens,
top_p=top_p,
frequency_penalty=frequency_penalty,
presence_penalty=presence_penalty,
repetition_penalty=repetition_penalty,
top_k=top_k,
min_p=min_p,
seed=seed,
top_a=top_a,
stream_output=stream_output,
response_format=response_format,
images=images,
documents=documents,
reasoning_effort=reasoning_effort,
system_message=system_message,
transforms=transforms,
api_key_override=api_key_override
)
# Submit button click event
submit_btn.click(
fn=submit_message,
inputs=[
message, chatbot, provider_choice,
openrouter_model, openai_model, hf_model, groq_model, cohere_model, together_model, ovh_model, cerebras_model, googleai_model,
temperature, max_tokens, top_p, frequency_penalty, presence_penalty, repetition_penalty,
top_k, min_p, seed, top_a, stream_output, response_format,
images, documents, reasoning_effort, system_message, transforms,
openrouter_api_key, openai_api_key, hf_api_key, groq_api_key, cohere_api_key, together_api_key, googleai_api_key
],
outputs=chatbot,
show_progress="minimal",
).then(
fn=lambda: "", # Clear message box after sending
inputs=None,
outputs=message
)
# Also submit on Enter key
message.submit(
fn=submit_message,
inputs=[
message, chatbot, provider_choice,
openrouter_model, openai_model, hf_model, groq_model, cohere_model, together_model, ovh_model, cerebras_model, googleai_model,
temperature, max_tokens, top_p, frequency_penalty, presence_penalty, repetition_penalty,
top_k, min_p, seed, top_a, stream_output, response_format,
images, documents, reasoning_effort, system_message, transforms,
openrouter_api_key, openai_api_key, hf_api_key, groq_api_key, cohere_api_key, together_api_key, googleai_api_key
],
outputs=chatbot,
show_progress="minimal",
).then(
fn=lambda: "", # Clear message box after sending
inputs=None,
outputs=message
)
# Clear chat button
clear_btn.click(
fn=clear_chat,
inputs=[],
outputs=[
chatbot, message, images, documents, temperature,
max_tokens, top_p, frequency_penalty, presence_penalty,
repetition_penalty, top_k, min_p, seed, top_a, stream_output,
response_format, reasoning_effort, system_message, transforms
]
)
return demo
# Launch the app
if __name__ == "__main__":
# Check API keys and print status
missing_keys = []
if not OPENROUTER_API_KEY:
logger.warning("WARNING: OPENROUTER_API_KEY environment variable is not set")
missing_keys.append("OpenRouter")
if not OPENAI_API_KEY:
logger.warning("WARNING: OPENAI_API_KEY environment variable is not set")
missing_keys.append("OpenAI")
if not GROQ_API_KEY:
logger.warning("WARNING: GROQ_API_KEY environment variable is not set")
missing_keys.append("Groq")
if not COHERE_API_KEY:
logger.warning("WARNING: COHERE_API_KEY environment variable is not set")
missing_keys.append("Cohere")
if not TOGETHER_API_KEY:
logger.warning("WARNING: TOGETHER_API_KEY environment variable is not set")
missing_keys.append("Together")
if not GOOGLEAI_API_KEY:
logger.warning("WARNING: GOOGLEAI_API_KEY environment variable is not set")
missing_keys.append("GoogleAI")
if missing_keys:
print("Missing API keys for the following providers:")
for key in missing_keys:
print(f"- {key}")
print("\nYou can still use the application, but some providers will require API keys.")
print("You can provide API keys through environment variables or use the API Key Override field.")
if "OpenRouter" in missing_keys:
print("\nNote: OpenRouter offers free tier access to many models!")
if "OVH" not in missing_keys and "Cerebras" not in missing_keys:
print("\nNote: OVH AI Endpoints (beta) and Cerebras offer free usage tiers!")
print("\nStarting CrispChat application...")
demo = create_app()
demo.launch(
server_name="0.0.0.0",
server_port=7860,
debug=True,
show_error=True
)