Spaces:
Running
Running
init MetaUAS
Browse files- app.py +160 -0
- demo_metauas.py +90 -0
- metauas.py +293 -0
- requirements.txt +14 -0
app.py
ADDED
@@ -0,0 +1,160 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
# -*- coding: utf-8 -*-
|
3 |
+
'''
|
4 |
+
@File : app.py
|
5 |
+
@Time : 2025/03/26 23:48:24
|
6 |
+
@Author : Bin-Bin Gao
|
7 |
+
@Email : [email protected]
|
8 |
+
@Homepage: https://csgaobb.github.io/
|
9 |
+
@Version : 1.0
|
10 |
+
@Desc : MetaUAS Demo with Gradio
|
11 |
+
'''
|
12 |
+
|
13 |
+
|
14 |
+
import os
|
15 |
+
import cv2
|
16 |
+
import torch
|
17 |
+
import json
|
18 |
+
import shutil
|
19 |
+
import kornia as K
|
20 |
+
import numpy as np
|
21 |
+
import gradio as gr
|
22 |
+
from easydict import EasyDict
|
23 |
+
from argparse import ArgumentParser
|
24 |
+
from torchvision.transforms.functional import pil_to_tensor
|
25 |
+
|
26 |
+
from metauas import MetaUAS, set_random_seed, normalize, apply_ad_scoremap, safely_load_state_dict
|
27 |
+
|
28 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
29 |
+
|
30 |
+
# configurations
|
31 |
+
random_seed = 1
|
32 |
+
encoder_name = 'efficientnet-b4'
|
33 |
+
decoder_name = 'unet'
|
34 |
+
encoder_depth = 5
|
35 |
+
decoder_depth = 5
|
36 |
+
num_alignment_layers = 3
|
37 |
+
alignment_type = 'sa'
|
38 |
+
fusion_policy = 'cat'
|
39 |
+
|
40 |
+
|
41 |
+
# build model
|
42 |
+
set_random_seed(random_seed)
|
43 |
+
metauas_model = MetaUAS(encoder_name,
|
44 |
+
decoder_name,
|
45 |
+
encoder_depth,
|
46 |
+
decoder_depth,
|
47 |
+
num_alignment_layers,
|
48 |
+
alignment_type,
|
49 |
+
fusion_policy
|
50 |
+
)
|
51 |
+
|
52 |
+
def process_image(prompt_img, query_img, options):
|
53 |
+
# Load the model based on selected options
|
54 |
+
if 'model-512' in options:
|
55 |
+
ckt_path = "weights/metauas-512.ckpt"
|
56 |
+
model = safely_load_state_dict(metauas_model, ckt_path)
|
57 |
+
img_size = 512
|
58 |
+
else:
|
59 |
+
ckt_path = 'weights/metauas-256.ckpt'
|
60 |
+
model = safely_load_state_dict(metauas_model, ckt_path)
|
61 |
+
img_size = 256
|
62 |
+
|
63 |
+
model.to(device)
|
64 |
+
model.eval()
|
65 |
+
|
66 |
+
# Ensure image is in RGB mode
|
67 |
+
prompt_img = prompt_img.convert('RGB')
|
68 |
+
query_img = query_img.convert('RGB')
|
69 |
+
|
70 |
+
query_img = pil_to_tensor(query_img).float() / 255.0
|
71 |
+
prompt_img = pil_to_tensor(prompt_img).float() / 255.0
|
72 |
+
|
73 |
+
if query_img.shape[1] != img_size:
|
74 |
+
resize_trans = K.augmentation.Resize([img_size, img_size], return_transform=True)
|
75 |
+
query_img = resize_trans(query_img)[0]
|
76 |
+
prompt_img = resize_trans(prompt_img)[0]
|
77 |
+
|
78 |
+
|
79 |
+
test_data = {
|
80 |
+
"query_image": query_img.to(device),
|
81 |
+
"prompt_image": prompt_img.to(device),
|
82 |
+
}
|
83 |
+
|
84 |
+
|
85 |
+
# Forward
|
86 |
+
with torch.no_grad():
|
87 |
+
predicted_masks = model(test_data)
|
88 |
+
anomaly_score = predicted_masks[:].max()
|
89 |
+
|
90 |
+
# Process anomaly map
|
91 |
+
query_img = test_data["query_image"][0] * 255
|
92 |
+
query_img = query_img.permute(1,2,0)
|
93 |
+
|
94 |
+
anomaly_map = predicted_masks.squeeze().detach()[:, :, None].cpu().numpy().repeat(3, 2)
|
95 |
+
|
96 |
+
anomaly_map_vis = apply_ad_scoremap(query_img.cpu(), normalize(anomaly_map))
|
97 |
+
|
98 |
+
|
99 |
+
anomaly_map = (anomaly_map * 255).astype(np.uint8)
|
100 |
+
anomaly_map = cv2.applyColorMap(anomaly_map, cv2.COLORMAP_JET)
|
101 |
+
anomaly_map = cv2.cvtColor(anomaly_map, cv2.COLOR_BGR2RGB)
|
102 |
+
|
103 |
+
return anomaly_map_vis, anomaly_map, f'{anomaly_score:.3f}'
|
104 |
+
|
105 |
+
# Define examples
|
106 |
+
examples = [
|
107 |
+
["images/134.png", "images/000.png", "model-256"],
|
108 |
+
["images/036.png", "images/024.png", "model-256"],
|
109 |
+
["images/178.png", "images/003.png", "model-256"],
|
110 |
+
]
|
111 |
+
|
112 |
+
# Gradio interface layout
|
113 |
+
with gr.Blocks() as demo:
|
114 |
+
gr.HTML("""<h1 align="center" style='margin-top: 30px;'>MetaUAS: Universal Anomaly Segmentation</h1>""")
|
115 |
+
gr.HTML("""<h1 align="center" style="font-size: 15px; "style='margin-top: 40px;'>just given ONE normal image prompt</h1>""")
|
116 |
+
|
117 |
+
with gr.Row():
|
118 |
+
with gr.Column():
|
119 |
+
with gr.Row():
|
120 |
+
prompt_image = gr.Image(type="pil", label="Prompt Image")
|
121 |
+
query_image = gr.Image(type="pil", label="Query Image")
|
122 |
+
model_selector = gr.Radio(["model-256", "model-512"], label="Pre-models")
|
123 |
+
|
124 |
+
with gr.Column():
|
125 |
+
with gr.Row():
|
126 |
+
anomaly_map_vis = gr.Image(type="pil", label="Anomaly Results")
|
127 |
+
anomaly_map = gr.Image(type="pil", label="Anomaly Maps")
|
128 |
+
anomaly_score = gr.Textbox(label="Anomaly Score")
|
129 |
+
|
130 |
+
with gr.Row():
|
131 |
+
submit_button = gr.Button("Submit", elem_id="submit-button")
|
132 |
+
clear_button = gr.Button("Clear")
|
133 |
+
|
134 |
+
# Set up the event handlers
|
135 |
+
submit_button.click(process_image, inputs=[prompt_image, query_image, model_selector], outputs=[anomaly_map_vis, anomaly_map, anomaly_score])
|
136 |
+
clear_button.click(lambda: (None, None, None), outputs=[anomaly_map_vis, anomaly_map, anomaly_score])
|
137 |
+
|
138 |
+
# Add examples directly to the Blocks interface
|
139 |
+
gr.Examples(examples, inputs=[prompt_image, query_image, model_selector])
|
140 |
+
|
141 |
+
# Add custom CSS to control the output image size and button styles
|
142 |
+
demo.css = """
|
143 |
+
#submit-button {
|
144 |
+
color: red !important; /* Font color */
|
145 |
+
background-color: orange !important; /* Background color */
|
146 |
+
border: none !important; /* Remove border */
|
147 |
+
padding: 10px 20px !important; /* Add padding */
|
148 |
+
border-radius: 5px !important; /* Rounded corners */
|
149 |
+
font-size: 16px !important; /* Font size */
|
150 |
+
cursor: pointer !important; /* Pointer cursor on hover */
|
151 |
+
}
|
152 |
+
|
153 |
+
#submit-button:hover {
|
154 |
+
background-color: darkorange !important; /* Darker orange on hover */
|
155 |
+
}
|
156 |
+
"""
|
157 |
+
|
158 |
+
# Launch the demo
|
159 |
+
demo.launch()
|
160 |
+
|
demo_metauas.py
ADDED
@@ -0,0 +1,90 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
# -*- coding: utf-8 -*-
|
3 |
+
'''
|
4 |
+
@File : demo_metauas.py
|
5 |
+
@Time : 2025/03/26 23:49:14
|
6 |
+
@Author : Bin-Bin Gao
|
7 |
+
@Email : [email protected]
|
8 |
+
@Homepage: https://csgaobb.github.io/
|
9 |
+
@Version : 1.0
|
10 |
+
@Desc : MetaUAS Demo
|
11 |
+
'''
|
12 |
+
|
13 |
+
|
14 |
+
import os
|
15 |
+
import cv2
|
16 |
+
import torch
|
17 |
+
import json
|
18 |
+
import shutil
|
19 |
+
import kornia as K
|
20 |
+
import numpy as np
|
21 |
+
|
22 |
+
from easydict import EasyDict
|
23 |
+
from argparse import ArgumentParser
|
24 |
+
from metauas import MetaUAS, set_random_seed, normalize, apply_ad_scoremap, read_image_as_tensor, safely_load_state_dict
|
25 |
+
|
26 |
+
if __name__ == "__main__":
|
27 |
+
random_seed = 1
|
28 |
+
|
29 |
+
set_random_seed(random_seed)
|
30 |
+
|
31 |
+
ckt_path = 'weights/metauas-256.ckpt'
|
32 |
+
img_size = 256
|
33 |
+
#ckt_path = "weights/metauas-512.ckpt"
|
34 |
+
#img_size = 512
|
35 |
+
|
36 |
+
# load model
|
37 |
+
encoder = 'efficientnet-b4'
|
38 |
+
decoder = 'unet'
|
39 |
+
encoder_depth = 5
|
40 |
+
decoder_depth = 5
|
41 |
+
num_crossfa_layers = 3
|
42 |
+
alignment_type = 'sa'
|
43 |
+
fusion_policy = 'cat'
|
44 |
+
|
45 |
+
model = MetaUAS(encoder,
|
46 |
+
decoder,
|
47 |
+
encoder_depth,
|
48 |
+
decoder_depth,
|
49 |
+
num_crossfa_layers,
|
50 |
+
alignment_type,
|
51 |
+
fusion_policy
|
52 |
+
)
|
53 |
+
|
54 |
+
|
55 |
+
model = safely_load_state_dict(model, ckt_path)
|
56 |
+
model.cuda()
|
57 |
+
model.eval()
|
58 |
+
|
59 |
+
|
60 |
+
# load test images
|
61 |
+
path_root = "./images/"
|
62 |
+
path_to_prompt = path_root + "036.png"
|
63 |
+
path_to_query = path_root + "024.png"
|
64 |
+
|
65 |
+
query = read_image_as_tensor(path_to_query)
|
66 |
+
prompt = read_image_as_tensor(path_to_prompt)
|
67 |
+
|
68 |
+
if query.shape[1] != img_size:
|
69 |
+
resize_trans = K.augmentation.Resize([img_size, img_size], return_transform=True)
|
70 |
+
query = resize_trans(query)[0]
|
71 |
+
prompt = resize_trans(prompt)[0]
|
72 |
+
|
73 |
+
|
74 |
+
test_data = {
|
75 |
+
"query_image": query.cuda(),
|
76 |
+
"prompt_image": prompt.cuda(),
|
77 |
+
}
|
78 |
+
|
79 |
+
# forward
|
80 |
+
predicted_masks = model(test_data)
|
81 |
+
|
82 |
+
# visualization
|
83 |
+
query_img = test_data["query_image"][0] * 255
|
84 |
+
query_img = query_img.permute(1,2,0)
|
85 |
+
|
86 |
+
pred = (1-predicted_masks.squeeze().detach())[:, :, None].cpu().numpy().repeat(3, 2)
|
87 |
+
# normalize just for analysis
|
88 |
+
scoremap_self = apply_ad_scoremap(query_img.cpu(), normalize(pred))
|
89 |
+
cv2.imwrite('./anomaly_map.jpg', scoremap_self)
|
90 |
+
|
metauas.py
ADDED
@@ -0,0 +1,293 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
# -*- coding: utf-8 -*-
|
3 |
+
'''
|
4 |
+
@File : metauas.py
|
5 |
+
@Time : 2025/03/26 23:46:12
|
6 |
+
@Author : Bin-Bin Gao
|
7 |
+
@Email : [email protected]
|
8 |
+
@Homepage: https://csgaobb.github.io/
|
9 |
+
@Version : 1.0
|
10 |
+
@Desc : some classes and functions for MetaUAS
|
11 |
+
'''
|
12 |
+
|
13 |
+
|
14 |
+
import os
|
15 |
+
import random
|
16 |
+
import kornia as K
|
17 |
+
import matplotlib.pyplot as plt
|
18 |
+
import numpy as np
|
19 |
+
import pytorch_lightning as pl
|
20 |
+
import torch
|
21 |
+
import torch.nn as nn
|
22 |
+
import tqdm
|
23 |
+
import time
|
24 |
+
import cv2
|
25 |
+
|
26 |
+
from PIL import Image
|
27 |
+
from einops import rearrange
|
28 |
+
from torch.nn import functional as F
|
29 |
+
from torchvision import transforms
|
30 |
+
from torchvision.transforms.functional import pil_to_tensor
|
31 |
+
from segmentation_models_pytorch.unet.model import UnetDecoder
|
32 |
+
from segmentation_models_pytorch.fpn.decoder import FPNDecoder
|
33 |
+
from segmentation_models_pytorch.encoders import get_encoder, get_preprocessing_params
|
34 |
+
|
35 |
+
def set_random_seed(seed=233, reproduce=False):
|
36 |
+
np.random.seed(seed)
|
37 |
+
torch.manual_seed(seed ** 2)
|
38 |
+
torch.cuda.manual_seed(seed ** 3)
|
39 |
+
random.seed(seed ** 4)
|
40 |
+
|
41 |
+
if reproduce:
|
42 |
+
torch.backends.cudnn.benchmark = False
|
43 |
+
torch.backends.cudnn.deterministic = True
|
44 |
+
else:
|
45 |
+
torch.backends.cudnn.benchmark = True
|
46 |
+
|
47 |
+
def normalize(pred, max_value=None, min_value=None):
|
48 |
+
if max_value is None or min_value is None:
|
49 |
+
return (pred - pred.min()) / (pred.max() - pred.min())
|
50 |
+
else:
|
51 |
+
return (pred - min_value) / (max_value - min_value)
|
52 |
+
|
53 |
+
|
54 |
+
def apply_ad_scoremap(image, scoremap, alpha=0.5):
|
55 |
+
np_image = np.asarray(image, dtype=np.float32)
|
56 |
+
scoremap = (scoremap * 255).astype(np.uint8)
|
57 |
+
scoremap = cv2.applyColorMap(scoremap, cv2.COLORMAP_JET)
|
58 |
+
scoremap = cv2.cvtColor(scoremap, cv2.COLOR_BGR2RGB)
|
59 |
+
return (alpha * np_image + (1 - alpha) * scoremap).astype(np.uint8)
|
60 |
+
|
61 |
+
|
62 |
+
def read_image_as_tensor(path_to_image):
|
63 |
+
pil_image = Image.open(path_to_image).convert("RGB")
|
64 |
+
image_as_tensor = pil_to_tensor(pil_image).float() / 255.0
|
65 |
+
return image_as_tensor
|
66 |
+
|
67 |
+
def safely_load_state_dict(model, checkpoint):
|
68 |
+
model.load_state_dict(torch.load(checkpoint), strict=True)
|
69 |
+
return model
|
70 |
+
|
71 |
+
|
72 |
+
class AlignmentModule(nn.Module):
|
73 |
+
def __init__(self, input_channels=2048, hidden_channels=256, alignment_type="sa", fusion_policy='cat'):
|
74 |
+
super().__init__()
|
75 |
+
self.fusion_policy = fusion_policy
|
76 |
+
self.alignment_layer = AlignmentLayer(input_channels, hidden_channels, alignment_type=alignment_type)
|
77 |
+
|
78 |
+
def forward(self, query_features, prompt_features):
|
79 |
+
if isinstance(prompt_features, list):
|
80 |
+
aligned_prompt = []
|
81 |
+
for i in range(len(prompt_features)):
|
82 |
+
weighted_prompt.append(self.alignment_layer(query_features, prompt_features[i]))
|
83 |
+
aligned_prompt = torch.mean(torch.stack(aligned_prompt),0)
|
84 |
+
|
85 |
+
else:
|
86 |
+
aligned_prompt = self.alignment_layer(query_features, prompt_features)
|
87 |
+
|
88 |
+
if self.fusion_policy == 'cat':
|
89 |
+
query_features = rearrange(
|
90 |
+
[query_features, aligned_prompt], "two b c h w -> b (two c) h w"
|
91 |
+
)
|
92 |
+
elif self.fusion_policy == 'add':
|
93 |
+
query_features = query_features + aligned_prompt
|
94 |
+
|
95 |
+
elif self.fusion_policy == 'absdiff':
|
96 |
+
query_features = (query_features - aligned_prompt).abs()
|
97 |
+
|
98 |
+
return query_features
|
99 |
+
|
100 |
+
class AlignmentLayer(nn.Module):
|
101 |
+
def __init__(self, input_channels=2048, hidden_channels=256, alignment_type="sa"):
|
102 |
+
super().__init__()
|
103 |
+
self.alignment_type = alignment_type
|
104 |
+
if alignment_type != "na":
|
105 |
+
self.dimensionality_reduction = nn.Conv2d(
|
106 |
+
input_channels, hidden_channels, kernel_size=1, stride=1, padding=0, bias=True
|
107 |
+
)
|
108 |
+
|
109 |
+
def forward(self, query_features, prompt_features):
|
110 |
+
# no-alignment
|
111 |
+
if self.alignment_type == 'na':
|
112 |
+
return prompt_features
|
113 |
+
else:
|
114 |
+
Q = self.dimensionality_reduction(query_features)
|
115 |
+
K = self.dimensionality_reduction(prompt_features)
|
116 |
+
V = rearrange(prompt_features, "b c h w -> b c (h w)")
|
117 |
+
|
118 |
+
soft_attention_map = torch.einsum("bcij,bckl->bijkl", Q, K)
|
119 |
+
soft_attention_map = rearrange(soft_attention_map, "b h1 w1 h2 w2 -> b h1 w1 (h2 w2)")
|
120 |
+
soft_attention_map = nn.Softmax(dim=3)(soft_attention_map)
|
121 |
+
|
122 |
+
# soft-alignment
|
123 |
+
if self.alignment_type == 'sa':
|
124 |
+
aligned_features = torch.einsum("bijp,bcp->bcij", soft_attention_map, V)
|
125 |
+
# hard-alignment
|
126 |
+
if self.alignment_type == 'ha':
|
127 |
+
max_v, max_index = attention_map.max(dim=-1, keepdim=True)
|
128 |
+
hard_attention_map = (attention_map == max_v).float()
|
129 |
+
aligned_features = torch.einsum("bijp,bcp->bcij", hard_attention_map, V)
|
130 |
+
|
131 |
+
return aligned_features
|
132 |
+
|
133 |
+
|
134 |
+
class MetaUAS(pl.LightningModule):
|
135 |
+
def __init__(self, encoder_name, decoder_name, encoder_depth, decoder_depth, num_alignment_layers, alignment_type, fusion_policy):
|
136 |
+
super().__init__()
|
137 |
+
|
138 |
+
self.encoder_name = encoder_name
|
139 |
+
self.decoder_name = decoder_name
|
140 |
+
self.encoder_depth = encoder_depth
|
141 |
+
self.decoder_depth = decoder_depth
|
142 |
+
|
143 |
+
self.num_alignment_layers = num_alignment_layers
|
144 |
+
self.alignment_type = alignment_type
|
145 |
+
self.fusion_policy = fusion_policy
|
146 |
+
|
147 |
+
|
148 |
+
align_input_channels = [448, 160, 56]
|
149 |
+
align_hidden_channels = [224, 80, 28]
|
150 |
+
encoder_channels = [3, 48, 32, 56, 160, 448]
|
151 |
+
decoder_channels = [256, 128, 64, 64, 48]
|
152 |
+
|
153 |
+
self.encoder = get_encoder(
|
154 |
+
self.encoder_name,
|
155 |
+
in_channels=3,
|
156 |
+
depth=self.encoder_depth,
|
157 |
+
weights="imagenet",)
|
158 |
+
|
159 |
+
preparams = get_preprocessing_params(
|
160 |
+
self.encoder_name,
|
161 |
+
pretrained="imagenet"
|
162 |
+
)
|
163 |
+
|
164 |
+
self.preprocess = transforms.Normalize(preparams['mean'], preparams['std'])
|
165 |
+
|
166 |
+
self.encoder.eval()
|
167 |
+
for param in self.encoder.parameters():
|
168 |
+
param.requires_grad = False
|
169 |
+
|
170 |
+
if self.decoder_name == "unet":
|
171 |
+
encoder_out_channels = encoder_channels[self.encoder_depth-self.decoder_depth:]
|
172 |
+
if self.fusion_policy == 'cat':
|
173 |
+
num_alignment_layers = self.num_alignment_layers
|
174 |
+
elif self.fusion_policy == 'add' or self.fusion_policy == 'absdiff':
|
175 |
+
num_alignment_layers = 0
|
176 |
+
|
177 |
+
self.decoder = UnetDecoder(
|
178 |
+
encoder_channels=encoder_out_channels,
|
179 |
+
decoder_channels=decoder_channels,
|
180 |
+
n_blocks= self.decoder_depth,
|
181 |
+
attention_type="scse",
|
182 |
+
num_coam_layers= num_alignment_layers,
|
183 |
+
)
|
184 |
+
|
185 |
+
elif self.decoder_name == "fpn":
|
186 |
+
encoder_out_channels = encoder_channels
|
187 |
+
if self.fusion_policy == 'cat':
|
188 |
+
for i in range(self.num_alignment_layers):
|
189 |
+
encoder_out_channels[-(i+1)] = 2 * encoder_out_channels[-(i+1)]
|
190 |
+
|
191 |
+
self.decoder = FPNDecoder(
|
192 |
+
encoder_channels= encoder_out_channels,
|
193 |
+
encoder_depth=self.encoder_depth,
|
194 |
+
pyramid_channels=256,
|
195 |
+
segmentation_channels=decoder_channels[-1],
|
196 |
+
dropout=0.2,
|
197 |
+
merge_policy="add",
|
198 |
+
)
|
199 |
+
|
200 |
+
elif self.decoder_name == "fpnadd":
|
201 |
+
segmentation_channels = 256 #128
|
202 |
+
encoder_out_channels = encoder_channels
|
203 |
+
if self.fusion_policy == 'cat':
|
204 |
+
for i in range(self.num_alignment_layers):
|
205 |
+
encoder_out_channels[-(i+1)] = 2 * encoder_out_channels[-(i+1)]
|
206 |
+
|
207 |
+
self.decoder = FPNDecoder(
|
208 |
+
encoder_channels= encoder_out_channels,
|
209 |
+
encoder_depth=self.encoder_depth,
|
210 |
+
pyramid_channels=256,
|
211 |
+
segmentation_channels=segmentation_channels,
|
212 |
+
dropout=0.2,
|
213 |
+
merge_policy="add",
|
214 |
+
)
|
215 |
+
elif self.decoder_name == "fpncat":
|
216 |
+
encoder_out_channels = encoder_channels
|
217 |
+
segmentation_channels = 256 #128
|
218 |
+
if self.fusion_policy == 'cat':
|
219 |
+
for i in range(self.num_alignment_layers):
|
220 |
+
encoder_out_channels[-(i+1)] = 2 * encoder_out_channels[-(i+1)]
|
221 |
+
|
222 |
+
self.decoder = FPNDecoder(
|
223 |
+
encoder_channels= encoder_out_channels,
|
224 |
+
encoder_depth=self.encoder_depth,
|
225 |
+
pyramid_channels=256,
|
226 |
+
segmentation_channels=segmentation_channels,
|
227 |
+
dropout=0.2,
|
228 |
+
merge_policy="cat",
|
229 |
+
)
|
230 |
+
|
231 |
+
|
232 |
+
if self.alignment_type == "sa" or self.alignment_type == "na" or self.alignment_type == "ha" :
|
233 |
+
self.alignment = nn.ModuleList(
|
234 |
+
[
|
235 |
+
AlignmentModule(
|
236 |
+
input_channels=align_input_channels[i],
|
237 |
+
hidden_channels=align_hidden_channels[i],
|
238 |
+
alignment_type=self.alignment_type,
|
239 |
+
fusion_policy=self.fusion_policy,
|
240 |
+
)
|
241 |
+
for i in range(self.num_alignment_layers)
|
242 |
+
]
|
243 |
+
)
|
244 |
+
|
245 |
+
if self.decoder_name == "fpncat":
|
246 |
+
self.mask_head = nn.Conv2d(
|
247 |
+
segmentation_channels*4,
|
248 |
+
1,
|
249 |
+
kernel_size=1,
|
250 |
+
stride=1,
|
251 |
+
padding=0,
|
252 |
+
)
|
253 |
+
elif self.decoder_name == "fpnadd":
|
254 |
+
self.mask_head = nn.Conv2d(
|
255 |
+
segmentation_channels,
|
256 |
+
1,
|
257 |
+
kernel_size=1,
|
258 |
+
stride=1,
|
259 |
+
padding=0,
|
260 |
+
)
|
261 |
+
else:
|
262 |
+
self.mask_head = nn.Conv2d(
|
263 |
+
decoder_channels[-1],
|
264 |
+
1,
|
265 |
+
kernel_size=1,
|
266 |
+
stride=1,
|
267 |
+
padding=0,
|
268 |
+
)
|
269 |
+
|
270 |
+
def forward(self, batch):
|
271 |
+
query_input = self.preprocess(batch["query_image"])
|
272 |
+
prompt_input = self.preprocess(batch["prompt_image"])
|
273 |
+
|
274 |
+
with torch.no_grad():
|
275 |
+
query_encoded_features = self.encoder(query_input)
|
276 |
+
prompt_encoded_features = self.encoder(prompt_input)
|
277 |
+
|
278 |
+
for i in range(len(self.alignment)):
|
279 |
+
query_encoded_features[-(i + 1)] = self.alignment[i](query_encoded_features[-(i + 1)], prompt_encoded_features[-(i + 1)])
|
280 |
+
|
281 |
+
query_decoded_features = self.decoder(*query_encoded_features[self.encoder_depth-self.decoder_depth:])
|
282 |
+
|
283 |
+
if self.decoder_name == "fpn" or self.decoder_name == "fpncat" or self.decoder_name == "fpnadd":
|
284 |
+
output = F.interpolate(self.mask_head(query_decoded_features), scale_factor=4, mode="bilinear", align_corners=False)
|
285 |
+
|
286 |
+
elif self.decoder_name == "unet":
|
287 |
+
if self.decoder_depth == 4:
|
288 |
+
output = F.interpolate(self.mask_head(query_decoded_features), scale_factor=2, mode="bilinear", align_corners=False)
|
289 |
+
if self.decoder_depth == 5:
|
290 |
+
if not self.training:
|
291 |
+
output = self.mask_head(query_decoded_features)
|
292 |
+
|
293 |
+
return output.sigmoid()
|
requirements.txt
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
easydict==1.11
|
2 |
+
einops==0.8.1
|
3 |
+
gradio==4.0.0
|
4 |
+
kornia==0.6.3
|
5 |
+
matplotlib==3.5.0
|
6 |
+
numpy==1.24.4
|
7 |
+
opencv_python==4.6.0.66
|
8 |
+
opencv_python_headless==4.7.0.72
|
9 |
+
Pillow==8.4.0
|
10 |
+
pytorch_lightning==1.9.0
|
11 |
+
segmentation_models_pytorch==0.2.1
|
12 |
+
torch==1.12.1+cu113
|
13 |
+
torchvision==0.13.1+cu113
|
14 |
+
tqdm==4.62.3
|