import gradio as gr import torch import torchvision.transforms as transforms from PIL import Image import os from pathlib import Path from gradio.flagging import SimpleCSVLogger from utils import GradioConfig class Resnet50Imagenet1kGradioApp: def __init__(self,cfg: GradioConfig): self.device = cfg.device # Change this to 'cuda' if you have a GPU available # Validate model path parameters # Convert to strings if needed and create path model_dir = str(cfg.model_dir) model_file = str(cfg.model_file_name) model_full_path = Path(model_dir) / model_file # Verify the file exists if not model_full_path.exists(): raise FileNotFoundError(f"Model file not found at: {model_full_path}") # load traced model self.model = torch.jit.load(model_full_path) self.model = self.model.to(self.device) self.model.eval() # Define the same transforms used during training/testing self.transforms = transforms.Compose([ transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ]) self.labels = cfg.labels @torch.no_grad() def predict(self, image): if image is None: return None # Convert to PIL Image if needed if not isinstance(image, Image.Image): image = Image.fromarray(image).convert('RGB') # Preprocess image img_tensor = self.transforms(image).unsqueeze(0).to(self.device) # Get prediction output = self.model(img_tensor) probabilities = torch.nn.functional.softmax(output[0], dim=0) probs, indices = torch.topk(probabilities, k=5) print(f"Top 5 predictions:") for idx, prob in zip(indices, probs): print(f"idx: {idx}, label : {self.labels[idx]} , prob: {prob.item() * 100:.2f}%") # Format probability to 2 decimal places) return { self.labels[idx]: float(prob) for idx, prob in zip(indices, probs) } # Create classifier instance cfg = GradioConfig() classifier = Resnet50Imagenet1kGradioApp(cfg) # Create Gradio interface demo = gr.Interface( fn=classifier.predict, inputs=gr.Image(), outputs=gr.Label(num_top_classes=5), title="Resnet50 Imagenet 1k classifier", description="Upload an image to classify Images", flagging_mode="never", flagging_callback=SimpleCSVLogger(), examples=["examples/blue_lobster.jpeg", "examples/lobster.jpeg", "examples/lobster2.jpeg", "examples/turtle.jpeg"] ) if __name__ == "__main__": demo.launch()