Spaces:
Runtime error
Runtime error
File size: 13,515 Bytes
db6a3b7 3057b36 7d475c1 db6a3b7 cd41f5f 690b53e db6a3b7 9880f3d 7d475c1 db6a3b7 9880f3d db6a3b7 9880f3d db6a3b7 e2e71cc bd46f72 cd41f5f d7b1815 e2e71cc cd41f5f c260ece cd41f5f e2e71cc a481d7a db6a3b7 a481d7a db894f7 a481d7a 342cabd e2e71cc a898014 9880f3d a898014 9880f3d c260ece 9880f3d a898014 9880f3d e2e71cc cd41f5f a481d7a cd41f5f e2e71cc 3057b36 cd41f5f 9173005 db6a3b7 9173005 db6a3b7 cd41f5f bd46f72 e2e71cc db6a3b7 a481d7a db6a3b7 cd41f5f db894f7 cd41f5f db894f7 bd46f72 7d475c1 15fe7bc a481d7a cd41f5f 7d475c1 a898014 cd41f5f 9173005 db6a3b7 e2e71cc 3057b36 cd41f5f 9173005 db6a3b7 9880f3d db6a3b7 e2e71cc db6a3b7 a481d7a db6a3b7 cd41f5f a898014 9173005 cd41f5f db6a3b7 cd41f5f 9173005 db6a3b7 342cabd c260ece 9173005 c260ece 9173005 c260ece 9173005 c260ece 9173005 c260ece e2e71cc cd41f5f 7d475c1 9173005 7d475c1 a481d7a db6a3b7 a481d7a 342cabd a481d7a bd46f72 342cabd a481d7a bd46f72 342cabd a481d7a bd46f72 342cabd a481d7a bd46f72 a481d7a bd46f72 342cabd a481d7a 342cabd a481d7a 342cabd 9173005 db6a3b7 a481d7a 342cabd a481d7a 342cabd a481d7a c260ece 9173005 342cabd c260ece a481d7a 342cabd c260ece 9173005 342cabd c260ece a481d7a 2e78ab8 9173005 db6a3b7 a481d7a db6a3b7 2e7f188 cd41f5f db6a3b7 a481d7a cd41f5f a481d7a db6a3b7 cd41f5f db6a3b7 cd41f5f a481d7a cd41f5f db6a3b7 a481d7a 9173005 a481d7a db6a3b7 342cabd a481d7a 342cabd a481d7a 342cabd db6a3b7 a481d7a 9173005 a481d7a 4241cf4 9173005 4241cf4 db6a3b7 342cabd c260ece a481d7a 9173005 a481d7a c260ece 9173005 c260ece db6a3b7 9173005 db6a3b7 c260ece a481d7a db6a3b7 c666caf a481d7a e2e71cc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 |
import gradio as gr
import spaces
from gradio_litmodel3d import LitModel3D
import os
import shutil
os.environ['SPCONV_ALGO'] = 'native'
from typing import *
import torch
import numpy as np
import imageio
import uuid
from easydict import EasyDict as edict
from PIL import Image
from trellis.pipelines import TrellisImageTo3DPipeline
from trellis.representations import Gaussian, MeshExtractResult
from trellis.utils import render_utils, postprocessing_utils
# Constants
MAX_SEED = np.iinfo(np.int32).max
TMP_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'tmp')
os.makedirs(TMP_DIR, exist_ok=True)
# Session Management Functions
def start_session(req: gr.Request):
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
print(f'Creating user directory: {user_dir}')
os.makedirs(user_dir, exist_ok=True)
def end_session(req: gr.Request):
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
print(f'Removing user directory: {user_dir}')
shutil.rmtree(user_dir)
# Image Preprocessing Function
def preprocess_image(image: Image.Image) -> Image.Image:
"""
Preprocess the input image.
Args:
image (Image.Image): The input image.
Returns:
Image.Image: The preprocessed image.
"""
# Validate image
if image is None:
raise ValueError("No image provided.")
if image.mode != "RGBA":
image = image.convert("RGBA")
processed_image = pipeline.preprocess_image(image)
return processed_image
# State Packing and Unpacking Functions
def pack_state(gs: Gaussian, mesh: MeshExtractResult, trial_id: str) -> dict:
return {
'gaussian': {
**gs.init_params,
'_xyz': gs._xyz.cpu().numpy(),
'_features_dc': gs._features_dc.cpu().numpy(),
'_scaling': gs._scaling.cpu().numpy(),
'_rotation': gs._rotation.cpu().numpy(),
'_opacity': gs._opacity.cpu().numpy(),
},
'mesh': {
'vertices': mesh.vertices.cpu().numpy(),
'faces': mesh.faces.cpu().numpy(),
},
'trial_id': trial_id,
}
def unpack_state(state: dict) -> Tuple[Gaussian, edict, str]:
gs = Gaussian(
aabb=state['gaussian']['aabb'],
sh_degree=state['gaussian']['sh_degree'],
mininum_kernel_size=state['gaussian']['mininum_kernel_size'],
scaling_bias=state['gaussian']['scaling_bias'],
opacity_bias=state['gaussian']['opacity_bias'],
scaling_activation=state['gaussian']['scaling_activation'],
)
gs._xyz = torch.tensor(state['gaussian']['_xyz'], device='cuda')
gs._features_dc = torch.tensor(state['gaussian']['_features_dc'], device='cuda')
gs._scaling = torch.tensor(state['gaussian']['_scaling'], device='cuda')
gs._rotation = torch.tensor(state['gaussian']['_rotation'], device='cuda')
gs._opacity = torch.tensor(state['gaussian']['_opacity'], device='cuda')
mesh = edict(
vertices=torch.tensor(state['mesh']['vertices'], device='cuda'),
faces=torch.tensor(state['mesh']['faces'], device='cuda'),
)
return gs, mesh, state['trial_id']
# Seed Management Function
def get_seed(randomize_seed: bool, seed: int) -> int:
"""
Get the random seed.
Args:
randomize_seed (bool): Whether to randomize the seed.
seed (int): The provided seed value.
Returns:
int: The final seed to use.
"""
return np.random.randint(0, MAX_SEED) if randomize_seed else seed
# Core 3D Generation Function
@spaces.GPU
def image_to_3d(
image: Image.Image,
seed: int,
ss_guidance_strength: float,
ss_sampling_steps: int,
slat_guidance_strength: float,
slat_sampling_steps: int,
req: gr.Request,
) -> Tuple[dict, str]:
"""
Convert an image to a 3D model.
Args:
image (Image.Image): The input image.
seed (int): The random seed.
ss_guidance_strength (float): The guidance strength for sparse structure generation.
ss_sampling_steps (int): The number of sampling steps for sparse structure generation.
slat_guidance_strength (float): The guidance strength for structured latent generation.
slat_sampling_steps (int): The number of sampling steps for structured latent generation.
req (gr.Request): Gradio request object.
Returns:
Tuple[dict, str]: The state dictionary and the path to the generated video.
"""
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
outputs = pipeline.run(
image,
seed=seed,
formats=["gaussian", "mesh"],
preprocess_image=False,
sparse_structure_sampler_params={
"steps": ss_sampling_steps,
"cfg_strength": ss_guidance_strength,
},
slat_sampler_params={
"steps": slat_sampling_steps,
"cfg_strength": slat_guidance_strength,
},
)
video = render_utils.render_video(outputs['gaussian'][0], num_frames=120)['color']
video_geo = render_utils.render_video(outputs['mesh'][0], num_frames=120)['normal']
video = [np.concatenate([video[i], video_geo[i]], axis=1) for i in range(len(video))]
trial_id = uuid.uuid4()
video_path = os.path.join(user_dir, f"{trial_id}.mp4")
imageio.mimsave(video_path, video, fps=15)
state = pack_state(outputs['gaussian'][0], outputs['mesh'][0], trial_id)
torch.cuda.empty_cache()
return state, video_path
# Existing GLB Extraction Function
@spaces.GPU
def extract_glb(
state: dict,
mesh_simplify: float,
texture_size: int,
req: gr.Request,
) -> Tuple[str, str]:
"""
Extract a GLB file from the 3D model.
Args:
state (dict): The state of the generated 3D model.
mesh_simplify (float): The mesh simplification factor.
texture_size (int): The texture resolution.
req (gr.Request): Gradio request object.
Returns:
Tuple[str, str]: The path to the extracted GLB file.
"""
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
gs, mesh, trial_id = unpack_state(state)
glb = postprocessing_utils.to_glb(gs, mesh, simplify=mesh_simplify, texture_size=texture_size, verbose=False)
glb_path = os.path.join(user_dir, f"{trial_id}.glb")
glb.export(glb_path)
torch.cuda.empty_cache()
return glb_path, glb_path
# **Addition: High-Quality GLB Extraction Function**
@spaces.GPU
def extract_glb_high_quality(
state: dict,
req: gr.Request,
) -> Tuple[str, str]:
"""
Extract a high-quality GLB file from the 3D model without polygon reduction.
Args:
state (dict): The state of the generated 3D model.
req (gr.Request): Gradio request object.
Returns:
Tuple[str, str]: The path to the high-quality GLB file.
"""
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
gs, mesh, trial_id = unpack_state(state)
# Set simplify to 0.0 to disable polygon reduction
# Set texture_size to 2048 for maximum texture quality
glb = postprocessing_utils.to_glb(gs, mesh, simplify=0.0, texture_size=2048, verbose=False)
glb_path = os.path.join(user_dir, f"{trial_id}_high_quality.glb")
glb.export(glb_path)
torch.cuda.empty_cache()
return glb_path, glb_path
# Gradio Interface Definition
with gr.Blocks(delete_cache=(600, 600)) as demo:
gr.Markdown("""
## Image to 3D Asset with [TRELLIS](https://trellis3d.github.io/)
* Upload an image and click "Generate" to create a 3D asset. If the image has an alpha channel, it will be used as the mask. Otherwise, the background will be removed automatically.
* If you find the generated 3D asset satisfactory, click "Extract GLB" to extract the GLB file and download it.
* **New:** Click "Download High Quality GLB" to download the GLB file without any polygon reduction and with maximum texture quality.
""")
with gr.Row():
with gr.Column():
# Image Input
image_prompt = gr.Image(label="Image Prompt", format="png", image_mode="RGBA", type="pil", height=300)
# Generation Settings Accordion
with gr.Accordion(label="Generation Settings", open=False):
seed = gr.Slider(0, MAX_SEED, label="Seed", value=0, step=1)
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
gr.Markdown("### Stage 1: Sparse Structure Generation")
with gr.Row():
ss_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=7.5, step=0.1)
ss_sampling_steps = gr.Slider(1, 500, label="Sampling Steps", value=12, step=1)
gr.Markdown("### Stage 2: Structured Latent Generation")
with gr.Row():
slat_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=3.0, step=0.1)
slat_sampling_steps = gr.Slider(1, 500, label="Sampling Steps", value=12, step=1)
# Generate Button
generate_btn = gr.Button("Generate")
# GLB Extraction Settings Accordion
with gr.Accordion(label="GLB Extraction Settings", open=False):
mesh_simplify = gr.Slider(0.0, 0.98, label="Simplify", value=0.95, step=0.01)
texture_size = gr.Slider(512, 2048, label="Texture Size", value=1024, step=512)
# Existing Extract GLB Button
extract_glb_btn = gr.Button("Extract GLB", interactive=False)
# **Addition: Download High Quality GLB Button**
extract_glb_high_quality_btn = gr.Button("Download High Quality GLB", interactive=False)
with gr.Column():
# Video Output
video_output = gr.Video(label="Generated 3D Asset", autoplay=True, loop=True, height=300)
# 3D Model Display
model_output = LitModel3D(label="Extracted GLB", exposure=20.0, height=300)
# Existing Download GLB Button
download_glb = gr.DownloadButton(
label="Download GLB",
# Removed 'file_count' to prevent runtime error
)
# **Addition: Download High Quality GLB DownloadButton**
download_high_quality_glb = gr.DownloadButton(
label="Download High Quality GLB",
# Removed 'file_count' to prevent runtime error
)
# State Variables
output_buf = gr.State()
glb_path_state = gr.State() # For standard GLB
glb_high_quality_path_state = gr.State() # For high-quality GLB
# Example Images
with gr.Row():
examples = gr.Examples(
examples=[
f'assets/example_image/{image}'
for image in os.listdir("assets/example_image")
],
inputs=[image_prompt],
fn=preprocess_image,
outputs=[image_prompt],
run_on_click=True,
examples_per_page=64,
)
# Event Handlers
demo.load(start_session)
demo.unload(end_session)
image_prompt.upload(
preprocess_image,
inputs=[image_prompt],
outputs=[image_prompt],
)
generate_btn.click(
get_seed,
inputs=[randomize_seed, seed],
outputs=[seed],
concurrency_limit=1 # Set concurrency limit for Generate
).then(
image_to_3d,
inputs=[image_prompt, seed, ss_guidance_strength, ss_sampling_steps, slat_guidance_strength, slat_sampling_steps, gr.Request()],
outputs=[output_buf, video_output],
concurrency_limit=1 # Set concurrency limit for image_to_3d
).then(
# Enable the Extract GLB and Download High Quality GLB buttons after generation
lambda: (True, True),
outputs=[extract_glb_btn, extract_glb_high_quality_btn],
)
video_output.clear(
lambda: (False, False),
outputs=[extract_glb_btn, extract_glb_high_quality_btn],
)
extract_glb_btn.click(
extract_glb,
inputs=[output_buf, mesh_simplify, texture_size, gr.Request()],
outputs=[model_output, glb_path_state],
concurrency_limit=1 # Set concurrency limit for extract_glb
).then(
lambda glb_path: glb_path if glb_path else "",
inputs=[glb_path_state],
outputs=[download_glb],
)
# **Addition: High-Quality GLB Extraction and Download**
extract_glb_high_quality_btn.click(
extract_glb_high_quality,
inputs=[output_buf, gr.Request()],
outputs=[model_output, glb_high_quality_path_state],
concurrency_limit=1 # Set concurrency limit for extract_glb_high_quality
).then(
lambda glb_path: glb_path if glb_path else "",
inputs=[glb_high_quality_path_state],
outputs=[download_high_quality_glb],
)
model_output.clear(
lambda: (gr.File.update(value=None), gr.File.update(value=None)),
outputs=[download_glb, download_high_quality_glb],
)
# Launch the Gradio app
if __name__ == "__main__":
pipeline = TrellisImageTo3DPipeline.from_pretrained("JeffreyXiang/TRELLIS-image-large")
pipeline.cuda()
try:
pipeline.preprocess_image(Image.fromarray(np.zeros((512, 512, 3), dtype=np.uint8))) # Preload rembg
except Exception as e:
print(f"Preloading rembg failed: {e}")
# Configure Gradio's queue without deprecated parameters
demo.queue().launch()
|