File size: 13,515 Bytes
db6a3b7
3057b36
7d475c1
db6a3b7
 
cd41f5f
690b53e
db6a3b7
9880f3d
7d475c1
db6a3b7
 
9880f3d
db6a3b7
 
9880f3d
db6a3b7
 
e2e71cc
bd46f72
cd41f5f
d7b1815
 
e2e71cc
cd41f5f
 
 
 
c260ece
cd41f5f
 
 
 
 
e2e71cc
a481d7a
db6a3b7
 
 
 
 
 
 
 
 
a481d7a
 
 
 
 
db894f7
a481d7a
342cabd
e2e71cc
a898014
9880f3d
 
 
 
 
 
 
 
 
 
 
 
 
a898014
9880f3d
c260ece
9880f3d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a898014
9880f3d
e2e71cc
cd41f5f
 
 
a481d7a
 
 
 
 
 
 
cd41f5f
 
 
e2e71cc
3057b36
cd41f5f
 
 
 
 
 
 
 
9173005
db6a3b7
9173005
db6a3b7
 
cd41f5f
bd46f72
 
 
 
 
e2e71cc
db6a3b7
 
a481d7a
db6a3b7
cd41f5f
db894f7
cd41f5f
db894f7
bd46f72
 
 
 
 
 
 
 
 
 
 
7d475c1
15fe7bc
 
a481d7a
cd41f5f
7d475c1
a898014
cd41f5f
9173005
db6a3b7
e2e71cc
3057b36
cd41f5f
 
 
 
 
9173005
db6a3b7
 
 
 
9880f3d
db6a3b7
 
e2e71cc
db6a3b7
 
a481d7a
db6a3b7
cd41f5f
a898014
9173005
cd41f5f
db6a3b7
cd41f5f
9173005
db6a3b7
342cabd
c260ece
 
 
 
9173005
c260ece
 
 
 
 
 
 
 
9173005
c260ece
 
 
 
 
9173005
c260ece
 
 
9173005
c260ece
e2e71cc
cd41f5f
7d475c1
 
9173005
 
 
7d475c1
a481d7a
db6a3b7
 
a481d7a
342cabd
a481d7a
 
bd46f72
342cabd
 
a481d7a
bd46f72
342cabd
 
a481d7a
bd46f72
342cabd
 
 
a481d7a
bd46f72
a481d7a
 
bd46f72
342cabd
 
a481d7a
 
342cabd
a481d7a
342cabd
 
9173005
db6a3b7
a481d7a
342cabd
a481d7a
342cabd
a481d7a
c260ece
9173005
342cabd
c260ece
a481d7a
342cabd
c260ece
9173005
342cabd
c260ece
a481d7a
 
2e78ab8
9173005
 
db6a3b7
a481d7a
db6a3b7
 
 
 
 
 
 
2e7f188
cd41f5f
db6a3b7
 
 
 
a481d7a
cd41f5f
 
a481d7a
db6a3b7
 
 
cd41f5f
db6a3b7
 
 
cd41f5f
 
 
a481d7a
cd41f5f
db6a3b7
a481d7a
9173005
a481d7a
db6a3b7
342cabd
a481d7a
342cabd
 
 
 
a481d7a
342cabd
db6a3b7
 
 
 
a481d7a
9173005
a481d7a
4241cf4
9173005
 
4241cf4
db6a3b7
 
342cabd
 
c260ece
a481d7a
9173005
a481d7a
c260ece
9173005
 
c260ece
 
 
db6a3b7
9173005
 
db6a3b7
c260ece
a481d7a
db6a3b7
 
 
c666caf
 
a481d7a
 
 
 
e2e71cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
import gradio as gr
import spaces
from gradio_litmodel3d import LitModel3D

import os
import shutil
os.environ['SPCONV_ALGO'] = 'native'
from typing import *
import torch
import numpy as np
import imageio
import uuid
from easydict import EasyDict as edict
from PIL import Image
from trellis.pipelines import TrellisImageTo3DPipeline
from trellis.representations import Gaussian, MeshExtractResult
from trellis.utils import render_utils, postprocessing_utils

# Constants
MAX_SEED = np.iinfo(np.int32).max
TMP_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'tmp')
os.makedirs(TMP_DIR, exist_ok=True)

# Session Management Functions
def start_session(req: gr.Request):
    user_dir = os.path.join(TMP_DIR, str(req.session_hash))
    print(f'Creating user directory: {user_dir}')
    os.makedirs(user_dir, exist_ok=True)

def end_session(req: gr.Request):
    user_dir = os.path.join(TMP_DIR, str(req.session_hash))
    print(f'Removing user directory: {user_dir}')
    shutil.rmtree(user_dir)

# Image Preprocessing Function
def preprocess_image(image: Image.Image) -> Image.Image:
    """
    Preprocess the input image.

    Args:
        image (Image.Image): The input image.

    Returns:
        Image.Image: The preprocessed image.
    """
    # Validate image
    if image is None:
        raise ValueError("No image provided.")
    if image.mode != "RGBA":
        image = image.convert("RGBA")
    processed_image = pipeline.preprocess_image(image)
    return processed_image

# State Packing and Unpacking Functions
def pack_state(gs: Gaussian, mesh: MeshExtractResult, trial_id: str) -> dict:
    return {
        'gaussian': {
            **gs.init_params,
            '_xyz': gs._xyz.cpu().numpy(),
            '_features_dc': gs._features_dc.cpu().numpy(),
            '_scaling': gs._scaling.cpu().numpy(),
            '_rotation': gs._rotation.cpu().numpy(),
            '_opacity': gs._opacity.cpu().numpy(),
        },
        'mesh': {
            'vertices': mesh.vertices.cpu().numpy(),
            'faces': mesh.faces.cpu().numpy(),
        },
        'trial_id': trial_id,
    }

def unpack_state(state: dict) -> Tuple[Gaussian, edict, str]:
    gs = Gaussian(
        aabb=state['gaussian']['aabb'],
        sh_degree=state['gaussian']['sh_degree'],
        mininum_kernel_size=state['gaussian']['mininum_kernel_size'],
        scaling_bias=state['gaussian']['scaling_bias'],
        opacity_bias=state['gaussian']['opacity_bias'],
        scaling_activation=state['gaussian']['scaling_activation'],
    )
    gs._xyz = torch.tensor(state['gaussian']['_xyz'], device='cuda')
    gs._features_dc = torch.tensor(state['gaussian']['_features_dc'], device='cuda')
    gs._scaling = torch.tensor(state['gaussian']['_scaling'], device='cuda')
    gs._rotation = torch.tensor(state['gaussian']['_rotation'], device='cuda')
    gs._opacity = torch.tensor(state['gaussian']['_opacity'], device='cuda')
    
    mesh = edict(
        vertices=torch.tensor(state['mesh']['vertices'], device='cuda'),
        faces=torch.tensor(state['mesh']['faces'], device='cuda'),
    )
    
    return gs, mesh, state['trial_id']

# Seed Management Function
def get_seed(randomize_seed: bool, seed: int) -> int:
    """
    Get the random seed.

    Args:
        randomize_seed (bool): Whether to randomize the seed.
        seed (int): The provided seed value.

    Returns:
        int: The final seed to use.
    """
    return np.random.randint(0, MAX_SEED) if randomize_seed else seed

# Core 3D Generation Function
@spaces.GPU
def image_to_3d(
    image: Image.Image,
    seed: int,
    ss_guidance_strength: float,
    ss_sampling_steps: int,
    slat_guidance_strength: float,
    slat_sampling_steps: int,
    req: gr.Request,
) -> Tuple[dict, str]:
    """
    Convert an image to a 3D model.

    Args:
        image (Image.Image): The input image.
        seed (int): The random seed.
        ss_guidance_strength (float): The guidance strength for sparse structure generation.
        ss_sampling_steps (int): The number of sampling steps for sparse structure generation.
        slat_guidance_strength (float): The guidance strength for structured latent generation.
        slat_sampling_steps (int): The number of sampling steps for structured latent generation.
        req (gr.Request): Gradio request object.

    Returns:
        Tuple[dict, str]: The state dictionary and the path to the generated video.
    """
    user_dir = os.path.join(TMP_DIR, str(req.session_hash))
    outputs = pipeline.run(
        image,
        seed=seed,
        formats=["gaussian", "mesh"],
        preprocess_image=False,
        sparse_structure_sampler_params={
            "steps": ss_sampling_steps,
            "cfg_strength": ss_guidance_strength,
        },
        slat_sampler_params={
            "steps": slat_sampling_steps,
            "cfg_strength": slat_guidance_strength,
        },
    )
    video = render_utils.render_video(outputs['gaussian'][0], num_frames=120)['color']
    video_geo = render_utils.render_video(outputs['mesh'][0], num_frames=120)['normal']
    video = [np.concatenate([video[i], video_geo[i]], axis=1) for i in range(len(video))]
    trial_id = uuid.uuid4()
    video_path = os.path.join(user_dir, f"{trial_id}.mp4")
    imageio.mimsave(video_path, video, fps=15)
    state = pack_state(outputs['gaussian'][0], outputs['mesh'][0], trial_id)
    torch.cuda.empty_cache()
    return state, video_path

# Existing GLB Extraction Function
@spaces.GPU
def extract_glb(
    state: dict,
    mesh_simplify: float,
    texture_size: int,
    req: gr.Request,
) -> Tuple[str, str]:
    """
    Extract a GLB file from the 3D model.

    Args:
        state (dict): The state of the generated 3D model.
        mesh_simplify (float): The mesh simplification factor.
        texture_size (int): The texture resolution.
        req (gr.Request): Gradio request object.

    Returns:
        Tuple[str, str]: The path to the extracted GLB file.
    """
    user_dir = os.path.join(TMP_DIR, str(req.session_hash))
    gs, mesh, trial_id = unpack_state(state)
    glb = postprocessing_utils.to_glb(gs, mesh, simplify=mesh_simplify, texture_size=texture_size, verbose=False)
    glb_path = os.path.join(user_dir, f"{trial_id}.glb")
    glb.export(glb_path)
    torch.cuda.empty_cache()
    return glb_path, glb_path

# **Addition: High-Quality GLB Extraction Function**
@spaces.GPU
def extract_glb_high_quality(
    state: dict,
    req: gr.Request,
) -> Tuple[str, str]:
    """
    Extract a high-quality GLB file from the 3D model without polygon reduction.

    Args:
        state (dict): The state of the generated 3D model.
        req (gr.Request): Gradio request object.

    Returns:
        Tuple[str, str]: The path to the high-quality GLB file.
    """
    user_dir = os.path.join(TMP_DIR, str(req.session_hash))
    gs, mesh, trial_id = unpack_state(state)
    # Set simplify to 0.0 to disable polygon reduction
    # Set texture_size to 2048 for maximum texture quality
    glb = postprocessing_utils.to_glb(gs, mesh, simplify=0.0, texture_size=2048, verbose=False)
    glb_path = os.path.join(user_dir, f"{trial_id}_high_quality.glb")
    glb.export(glb_path)
    torch.cuda.empty_cache()
    return glb_path, glb_path

# Gradio Interface Definition
with gr.Blocks(delete_cache=(600, 600)) as demo:
    gr.Markdown("""
    ## Image to 3D Asset with [TRELLIS](https://trellis3d.github.io/)
    * Upload an image and click "Generate" to create a 3D asset. If the image has an alpha channel, it will be used as the mask. Otherwise, the background will be removed automatically.
    * If you find the generated 3D asset satisfactory, click "Extract GLB" to extract the GLB file and download it.
    * **New:** Click "Download High Quality GLB" to download the GLB file without any polygon reduction and with maximum texture quality.
    """)
    
    with gr.Row():
        with gr.Column():
            # Image Input
            image_prompt = gr.Image(label="Image Prompt", format="png", image_mode="RGBA", type="pil", height=300)
            
            # Generation Settings Accordion
            with gr.Accordion(label="Generation Settings", open=False):
                seed = gr.Slider(0, MAX_SEED, label="Seed", value=0, step=1)
                randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
                gr.Markdown("### Stage 1: Sparse Structure Generation")
                with gr.Row():
                    ss_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=7.5, step=0.1)
                    ss_sampling_steps = gr.Slider(1, 500, label="Sampling Steps", value=12, step=1)
                gr.Markdown("### Stage 2: Structured Latent Generation")
                with gr.Row():
                    slat_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=3.0, step=0.1)
                    slat_sampling_steps = gr.Slider(1, 500, label="Sampling Steps", value=12, step=1)

            # Generate Button
            generate_btn = gr.Button("Generate")
            
            # GLB Extraction Settings Accordion
            with gr.Accordion(label="GLB Extraction Settings", open=False):
                mesh_simplify = gr.Slider(0.0, 0.98, label="Simplify", value=0.95, step=0.01)
                texture_size = gr.Slider(512, 2048, label="Texture Size", value=1024, step=512)
            
            # Existing Extract GLB Button
            extract_glb_btn = gr.Button("Extract GLB", interactive=False)
            
            # **Addition: Download High Quality GLB Button**
            extract_glb_high_quality_btn = gr.Button("Download High Quality GLB", interactive=False)

        with gr.Column():
            # Video Output
            video_output = gr.Video(label="Generated 3D Asset", autoplay=True, loop=True, height=300)
            # 3D Model Display
            model_output = LitModel3D(label="Extracted GLB", exposure=20.0, height=300)
            # Existing Download GLB Button
            download_glb = gr.DownloadButton(
                label="Download GLB",
                # Removed 'file_count' to prevent runtime error
            )
            
            # **Addition: Download High Quality GLB DownloadButton**
            download_high_quality_glb = gr.DownloadButton(
                label="Download High Quality GLB",
                # Removed 'file_count' to prevent runtime error
            )
    
    # State Variables
    output_buf = gr.State()
    glb_path_state = gr.State()  # For standard GLB
    glb_high_quality_path_state = gr.State()  # For high-quality GLB

    # Example Images
    with gr.Row():
        examples = gr.Examples(
            examples=[
                f'assets/example_image/{image}'
                for image in os.listdir("assets/example_image")
            ],
            inputs=[image_prompt],
            fn=preprocess_image,
            outputs=[image_prompt],
            run_on_click=True,
            examples_per_page=64,
        )

    # Event Handlers
    demo.load(start_session)
    demo.unload(end_session)
    
    image_prompt.upload(
        preprocess_image,
        inputs=[image_prompt],
        outputs=[image_prompt],
    )

    generate_btn.click(
        get_seed,
        inputs=[randomize_seed, seed],
        outputs=[seed],
        concurrency_limit=1  # Set concurrency limit for Generate
    ).then(
        image_to_3d,
        inputs=[image_prompt, seed, ss_guidance_strength, ss_sampling_steps, slat_guidance_strength, slat_sampling_steps, gr.Request()],
        outputs=[output_buf, video_output],
        concurrency_limit=1  # Set concurrency limit for image_to_3d
    ).then(
        # Enable the Extract GLB and Download High Quality GLB buttons after generation
        lambda: (True, True),
        outputs=[extract_glb_btn, extract_glb_high_quality_btn],
    )

    video_output.clear(
        lambda: (False, False),
        outputs=[extract_glb_btn, extract_glb_high_quality_btn],
    )

    extract_glb_btn.click(
        extract_glb,
        inputs=[output_buf, mesh_simplify, texture_size, gr.Request()],
        outputs=[model_output, glb_path_state],
        concurrency_limit=1  # Set concurrency limit for extract_glb
    ).then(
        lambda glb_path: glb_path if glb_path else "",
        inputs=[glb_path_state],
        outputs=[download_glb],
    )

    # **Addition: High-Quality GLB Extraction and Download**
    extract_glb_high_quality_btn.click(
        extract_glb_high_quality,
        inputs=[output_buf, gr.Request()],
        outputs=[model_output, glb_high_quality_path_state],
        concurrency_limit=1  # Set concurrency limit for extract_glb_high_quality
    ).then(
        lambda glb_path: glb_path if glb_path else "",
        inputs=[glb_high_quality_path_state],
        outputs=[download_high_quality_glb],
    )

    model_output.clear(
        lambda: (gr.File.update(value=None), gr.File.update(value=None)),
        outputs=[download_glb, download_high_quality_glb],
    )

# Launch the Gradio app
if __name__ == "__main__":
    pipeline = TrellisImageTo3DPipeline.from_pretrained("JeffreyXiang/TRELLIS-image-large")
    pipeline.cuda()
    try:
        pipeline.preprocess_image(Image.fromarray(np.zeros((512, 512, 3), dtype=np.uint8)))    # Preload rembg
    except Exception as e:
        print(f"Preloading rembg failed: {e}")
    
    # Configure Gradio's queue without deprecated parameters
    demo.queue().launch()