croeasusking commited on
Commit
5edab5b
·
verified ·
1 Parent(s): 8dc7bca

submission

Browse files
Files changed (2) hide show
  1. app.py +206 -0
  2. requirements.txt +0 -0
app.py ADDED
@@ -0,0 +1,206 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import gradio as gr
3
+ import requests
4
+ import inspect
5
+ import pandas as pd
6
+ from smolagents import CodeAgent, DuckDuckGoSearchTool, OpenAIServerModel
7
+ # (Keep Constants as is)
8
+ # --- Constants ---
9
+ DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
10
+
11
+
12
+ # --- Basic Agent Definition ---
13
+ # ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
14
+ class BasicAgent:
15
+ def __init__(self):
16
+ print("BasicAgent initialized.")
17
+ # Initialize the model
18
+ #model = HfApiModel()
19
+ model = OpenAIServerModel(model_id="gpt-4o")
20
+ # Initialize the search tool
21
+ search_tool = DuckDuckGoSearchTool()
22
+ # Initialize Agent
23
+ self.agent = CodeAgent(
24
+ model = model,
25
+ tools=[search_tool]
26
+ )
27
+ def __call__(self, question: str) -> str:
28
+ print(f"Agent received question (first 50 chars): {question[:50]}...")
29
+ fixed_answer =self.agent.run(question)
30
+ print(f"Agent returning fixed answer: {fixed_answer}")
31
+ return fixed_answer
32
+
33
+ def run_and_submit_all( profile: gr.OAuthProfile | None):
34
+ """
35
+ Fetches all questions, runs the BasicAgent on them, submits all answers,
36
+ and displays the results.
37
+ """
38
+ # --- Determine HF Space Runtime URL and Repo URL ---
39
+ space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
40
+
41
+ if profile:
42
+ username= f"{profile.username}"
43
+ print(f"User logged in: {username}")
44
+ else:
45
+ print("User not logged in.")
46
+ return "Please Login to Hugging Face with the button.", None
47
+
48
+ api_url = DEFAULT_API_URL
49
+ questions_url = f"{api_url}/questions"
50
+ submit_url = f"{api_url}/submit"
51
+
52
+ # 1. Instantiate Agent ( modify this part to create your agent)
53
+ try:
54
+ agent = BasicAgent()
55
+ except Exception as e:
56
+ print(f"Error instantiating agent: {e}")
57
+ return f"Error initializing agent: {e}", None
58
+ # In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
59
+ agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
60
+ print(agent_code)
61
+
62
+ # 2. Fetch Questions
63
+ print(f"Fetching questions from: {questions_url}")
64
+ try:
65
+ response = requests.get(questions_url, timeout=15)
66
+ response.raise_for_status()
67
+ questions_data = response.json()
68
+ if not questions_data:
69
+ print("Fetched questions list is empty.")
70
+ return "Fetched questions list is empty or invalid format.", None
71
+ print(f"Fetched {len(questions_data)} questions.")
72
+ except requests.exceptions.RequestException as e:
73
+ print(f"Error fetching questions: {e}")
74
+ return f"Error fetching questions: {e}", None
75
+ except requests.exceptions.JSONDecodeError as e:
76
+ print(f"Error decoding JSON response from questions endpoint: {e}")
77
+ print(f"Response text: {response.text[:500]}")
78
+ return f"Error decoding server response for questions: {e}", None
79
+ except Exception as e:
80
+ print(f"An unexpected error occurred fetching questions: {e}")
81
+ return f"An unexpected error occurred fetching questions: {e}", None
82
+
83
+ # 3. Run your Agent
84
+ results_log = []
85
+ answers_payload = []
86
+ print(f"Running agent on {len(questions_data)} questions...")
87
+ for item in questions_data:
88
+ task_id = item.get("task_id")
89
+ question_text = item.get("question")
90
+ if not task_id or question_text is None:
91
+ print(f"Skipping item with missing task_id or question: {item}")
92
+ continue
93
+ try:
94
+ submitted_answer = agent(question_text)
95
+ answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
96
+ results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
97
+ except Exception as e:
98
+ print(f"Error running agent on task {task_id}: {e}")
99
+ results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
100
+
101
+ if not answers_payload:
102
+ print("Agent did not produce any answers to submit.")
103
+ return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
104
+
105
+ # 4. Prepare Submission
106
+ submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
107
+ status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
108
+ print(status_update)
109
+
110
+ # 5. Submit
111
+ print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
112
+ try:
113
+ response = requests.post(submit_url, json=submission_data, timeout=60)
114
+ response.raise_for_status()
115
+ result_data = response.json()
116
+ final_status = (
117
+ f"Submission Successful!\n"
118
+ f"User: {result_data.get('username')}\n"
119
+ f"Overall Score: {result_data.get('score', 'N/A')}% "
120
+ f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
121
+ f"Message: {result_data.get('message', 'No message received.')}"
122
+ )
123
+ print("Submission successful.")
124
+ results_df = pd.DataFrame(results_log)
125
+ return final_status, results_df
126
+ except requests.exceptions.HTTPError as e:
127
+ error_detail = f"Server responded with status {e.response.status_code}."
128
+ try:
129
+ error_json = e.response.json()
130
+ error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
131
+ except requests.exceptions.JSONDecodeError:
132
+ error_detail += f" Response: {e.response.text[:500]}"
133
+ status_message = f"Submission Failed: {error_detail}"
134
+ print(status_message)
135
+ results_df = pd.DataFrame(results_log)
136
+ return status_message, results_df
137
+ except requests.exceptions.Timeout:
138
+ status_message = "Submission Failed: The request timed out."
139
+ print(status_message)
140
+ results_df = pd.DataFrame(results_log)
141
+ return status_message, results_df
142
+ except requests.exceptions.RequestException as e:
143
+ status_message = f"Submission Failed: Network error - {e}"
144
+ print(status_message)
145
+ results_df = pd.DataFrame(results_log)
146
+ return status_message, results_df
147
+ except Exception as e:
148
+ status_message = f"An unexpected error occurred during submission: {e}"
149
+ print(status_message)
150
+ results_df = pd.DataFrame(results_log)
151
+ return status_message, results_df
152
+
153
+
154
+ # --- Build Gradio Interface using Blocks ---
155
+ with gr.Blocks() as demo:
156
+ gr.Markdown("# Basic Agent Evaluation Runner")
157
+ gr.Markdown(
158
+ """
159
+ **Instructions:**
160
+ 1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
161
+ 2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
162
+ 3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
163
+ ---
164
+ **Disclaimers:**
165
+ Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
166
+ This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
167
+ Please note that this version requires an OpenAI Key to run.
168
+ """
169
+ )
170
+
171
+ gr.LoginButton()
172
+
173
+ run_button = gr.Button("Run Evaluation & Submit All Answers")
174
+
175
+ status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
176
+ # Removed max_rows=10 from DataFrame constructor
177
+ results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
178
+
179
+ run_button.click(
180
+ fn=run_and_submit_all,
181
+ outputs=[status_output, results_table]
182
+ )
183
+
184
+ if __name__ == "__main__":
185
+ print("\n" + "-"*30 + " App Starting " + "-"*30)
186
+ # Check for SPACE_HOST and SPACE_ID at startup for information
187
+ space_host_startup = os.getenv("SPACE_HOST")
188
+ space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
189
+
190
+ if space_host_startup:
191
+ print(f"✅ SPACE_HOST found: {space_host_startup}")
192
+ print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
193
+ else:
194
+ print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
195
+
196
+ if space_id_startup: # Print repo URLs if SPACE_ID is found
197
+ print(f"✅ SPACE_ID found: {space_id_startup}")
198
+ print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
199
+ print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
200
+ else:
201
+ print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
202
+
203
+ print("-"*(60 + len(" App Starting ")) + "\n")
204
+
205
+ print("Launching Gradio Interface for Basic Agent Evaluation...")
206
+ demo.launch(debug=True, share=False)
requirements.txt ADDED
File without changes