dawood HF Staff commited on
Commit
66ff3af
·
1 Parent(s): c8d0580

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +52 -51
app.py CHANGED
@@ -1,51 +1,52 @@
1
- from pathlib import Path
2
-
3
- import torch
4
- import gradio as gr
5
- from torch import nn
6
-
7
-
8
- LABELS = Path('class_names.txt').read_text().splitlines()
9
-
10
- model = nn.Sequential(
11
- nn.Conv2d(1, 32, 3, padding='same'),
12
- nn.ReLU(),
13
- nn.MaxPool2d(2),
14
- nn.Conv2d(32, 64, 3, padding='same'),
15
- nn.ReLU(),
16
- nn.MaxPool2d(2),
17
- nn.Conv2d(64, 128, 3, padding='same'),
18
- nn.ReLU(),
19
- nn.MaxPool2d(2),
20
- nn.Flatten(),
21
- nn.Linear(1152, 256),
22
- nn.ReLU(),
23
- nn.Linear(256, len(LABELS)),
24
- )
25
- state_dict = torch.load('pytorch_model.bin', map_location='cpu')
26
- model.load_state_dict(state_dict, strict=False)
27
- model.eval()
28
-
29
- def predict(im):
30
- x = torch.tensor(im, dtype=torch.float32).unsqueeze(0).unsqueeze(0) / 255.
31
-
32
- with torch.no_grad():
33
- out = model(x)
34
-
35
- probabilities = torch.nn.functional.softmax(out[0], dim=0)
36
-
37
- values, indices = torch.topk(probabilities, 5)
38
-
39
- return {LABELS[i]: v.item() for i, v in zip(indices, values)}
40
-
41
-
42
- interface = gr.Interface(
43
- predict,
44
- inputs='sketchpad',
45
- outputs='label',
46
- theme="huggingface",
47
- title="Sketch Recognition",
48
- description="Who wants to play Pictionary? Draw a common object like a shovel or a laptop, and the algorithm will guess in real time!",
49
- article = "<p style='text-align: center'>Sketch Recognition | Demo Model</p>",
50
- live=True)
51
- interface.launch(debug=True)
 
 
1
+ from pathlib import Path
2
+
3
+ import torch
4
+ import gradio as gr
5
+ from torch import nn
6
+
7
+
8
+ LABELS = Path('class_names.txt').read_text().splitlines()
9
+
10
+ model = nn.Sequential(
11
+ nn.Conv2d(1, 32, 3, padding='same'),
12
+ nn.ReLU(),
13
+ nn.MaxPool2d(2),
14
+ nn.Conv2d(32, 64, 3, padding='same'),
15
+ nn.ReLU(),
16
+ nn.MaxPool2d(2),
17
+ nn.Conv2d(64, 128, 3, padding='same'),
18
+ nn.ReLU(),
19
+ nn.MaxPool2d(2),
20
+ nn.Flatten(),
21
+ nn.Linear(1152, 256),
22
+ nn.ReLU(),
23
+ nn.Linear(256, len(LABELS)),
24
+ )
25
+ state_dict = torch.load('pytorch_model.bin', map_location='cpu')
26
+ model.load_state_dict(state_dict, strict=False)
27
+ model.eval()
28
+
29
+ def predict(im):
30
+ x = torch.tensor(im, dtype=torch.float32).unsqueeze(0).unsqueeze(0) / 255.
31
+
32
+ with torch.no_grad():
33
+ out = model(x)
34
+
35
+ probabilities = torch.nn.functional.softmax(out[0], dim=0)
36
+
37
+ values, indices = torch.topk(probabilities, 5)
38
+
39
+ return {LABELS[i]: v.item() for i, v in zip(indices, values)}
40
+
41
+ sketchpad = gr.Image(label="Sketchpad", source="canvas"),
42
+
43
+ interface = gr.Interface(
44
+ predict,
45
+ inputs=sketchpad,
46
+ outputs='label',
47
+ theme="huggingface",
48
+ title="Sketch Recognition",
49
+ description="Who wants to play Pictionary? Draw a common object like a shovel or a laptop, and the algorithm will guess in real time!",
50
+ article = "<p style='text-align: center'>Sketch Recognition | Demo Model</p>",
51
+ live=True)
52
+ interface.launch(debug=True)