Spaces:
Sleeping
Sleeping
File size: 9,842 Bytes
d94942e e12e334 d94942e c273de3 d94942e e12e334 d94942e c273de3 e12e334 c273de3 e12e334 c273de3 e12e334 c273de3 e12e334 c273de3 d94942e e12e334 d94942e 96f72fa d94942e c273de3 d94942e 7ef133a e12e334 7ef133a d94942e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 |
from dotenv import load_dotenv
import os
from PyPDF2 import PdfReader
from docx import Document
from docx.text.paragraph import Paragraph
from docx.table import Table
from langchain.text_splitter import CharacterTextSplitter
from langchain_community.vectorstores import Chroma
from langchain_community.embeddings import OpenAIEmbeddings
import streamlit as st
from textwrap import dedent
from Prompts_and_Chains import LLMChains
from Templates import json_structure
import json
from Utils import estimate_to_value
from Utils import is_key_value_present
def extract_text_from_file(file):
text = file.read().decode("utf-8")
return text
def process_paragraph(paragraph):
# Process the content of the paragraph as needed
return paragraph.text
def process_table(table):
# Process the content of the table as needed
text = ""
for row in table.rows:
for cell in row.cells:
text += cell.text
return text
def read_docx(file_path):
doc = Document(file_path)
data = []
for element in doc.iter_inner_content():
if isinstance(element, Paragraph):
data.append(process_paragraph(element))
if isinstance(element, Table):
data.append(process_table(element))
return "\n".join(data)
def get_pdf_text(pdf):
"""This function extracts the text from the PDF file"""
text = []
pdf_reader = PdfReader(pdf)
for page in pdf_reader.pages:
text.append(page.extract_text())
return "\n".join(text)
class RFPProcessor:
def __init__(self):
load_dotenv()
self.openai_api_key = os.getenv("OPENAI_API_KEY")
self.chains_obj = LLMChains()
def generate_roadmap(self):
roadmap_data = self.chains_obj.roadmap_chain.run(
{"project_input": st.session_state["estimation_data_json"]}
)
print(roadmap_data)
st.session_state["roadmap_data_json"] = roadmap_data
data = json.loads(roadmap_data)
try:
decoded_data = json.loads(roadmap_data)
print(decoded_data)
except json.decoder.JSONDecodeError as e:
print(f"JSON decoding error: {e}")
for phases_data in data["phases"]:
phase = phases_data["name"]
for milestone in phases_data["milestones"]:
milestone_name = milestone["name"]
total_time = milestone["totalTime"]
for feature in milestone["features"]:
featue_name = feature["name"]
featue_rationale = feature["rationale"]
featue_effort = feature["effort"]
phase_key_present = is_key_value_present(
st.session_state["roadmap_data"], "phases", phase
)
if phase_key_present:
milestone_key_present = is_key_value_present(
st.session_state["roadmap_data"],
"milestones",
milestone_name,
)
if milestone_key_present:
st.session_state.roadmap_data.append(
{
"phases": "",
"milestones": "",
"total_time": "",
"features": featue_name,
"rational": featue_rationale,
"effort": featue_effort,
}
)
else:
st.session_state.roadmap_data.append(
{
"phases": "",
"milestones": milestone_name,
"total_time": total_time,
"features": featue_name,
"rational": featue_rationale,
"effort": featue_effort,
}
)
else:
st.session_state.roadmap_data.append(
{
"phases": phase,
"milestones": milestone_name,
"total_time": total_time,
"features": featue_name,
"rational": featue_rationale,
"effort": featue_effort,
}
)
st.session_state["is_roadmap_data_created"] = True
def generate_estimations(self, tech_leads, senior_developers, junior_developers):
print(st.session_state["user_stories_json"])
inputs = {
"project_summary": st.session_state["rfp_summary"],
"user_stories": st.session_state["user_stories_json"],
"tech_leads": tech_leads,
"senior_developers": senior_developers,
"junior_developers": junior_developers,
}
data = self.chains_obj.estimations_chain.run(inputs)
st.session_state["estimation_data_json"] = data
estimation_json_data = json.loads(data)
for epic_data in estimation_json_data["epics"]:
epic = epic_data["name"]
for feature_data in epic_data["features"]:
feature = feature_data["name"]
for story in feature_data["stories"]:
average = estimate_to_value(story["estimate"])
st.session_state.estimation_data.append(
{
"epic": epic,
"Feature": feature,
"Story Description": story["description"],
"Estimate": story["estimate"],
"Person Days Range": story["effort"],
"Story Rationale": story["rationale"],
"Person Days": average,
}
)
st.session_state["is_estimation_data_created"] = True
def process_rfp_data(self, project_name, files):
if project_name and files:
extracted_data = []
for file in files:
if file.name.endswith(".docx"):
extracted_data.append(read_docx(file))
elif file.name.endswith(".pdf"):
extracted_data.append(get_pdf_text(file))
else:
extracted_data.append(extract_text_from_file(file))
# loader = PdfReader(file)
# for i, page in enumerate(loader.pages):
# content = page.extract_text()
# if content:
# temp = st.session_state["rfp_details"]
# st.session_state["rfp_details"] = temp + content
st.session_state["rfp_details"] = " ".join(extracted_data)
text_splitter = CharacterTextSplitter(
separator="\n", chunk_size=1000, chunk_overlap=150, length_function=len
)
texts = text_splitter.split_text(st.session_state["rfp_details"])
st.session_state["vectorstore"] = Chroma().from_texts(
texts, embedding=OpenAIEmbeddings(openai_api_key=self.openai_api_key)
)
st.session_state.project_name = project_name
st.session_state["rfp_summary"] = self.chains_obj.summary_chain.run(
{
"project_name": st.session_state["project_name"],
"rfp_details": dedent(st.session_state["rfp_details"]),
}
)
st.session_state["is_data_processed"] = True
st.success("data processed sucessfully")
def genrate_bot_result(self):
if len(st.session_state["input"]) > 0:
db = st.session_state["vectorstore"]
context = db.similarity_search(st.session_state["input"])
inputs = {
"context": context[0].page_content,
"input": st.session_state["input"],
}
output = self.chains_obj.bot_chain.run(inputs)
st.session_state.past.append(st.session_state["input"])
st.session_state.generated.append(output)
st.session_state["input"] = ""
def genrate_user_stories(self):
output = self.chains_obj.user_story_chain.run(
{
"project_name": st.session_state["project_name"],
"rfp_details": st.session_state["rfp_details"],
}
)
st.session_state["user_stories"] = output
json_response = self.chains_obj.json_chain.run(
{
"user_stories": st.session_state["user_stories"],
"json_structure": json_structure,
}
)
user_stories_data = json.loads(json_response)
print(user_stories_data)
st.session_state["user_stories_json"] = user_stories_data
for epic_data in user_stories_data["epics"]:
epic = epic_data["name"]
for feature_data in epic_data["features"]:
feature = feature_data["name"]
for story in feature_data["stories"]:
st.session_state.user_stories_data.append(
{
"epic": epic,
"Feature": feature,
"Story Description": story["description"],
}
)
st.session_state["is_user_stories_created"] = True
|