import gradio as gr import joblib # Load the model and label encoder model = joblib.load("soil.pkl") label_encoder = joblib.load("label_encoder.pkl") def predict_crop(N, P, K, temperature, humidity, ph, rainfall): input_data = [[N, P, K, temperature, humidity, ph, rainfall]] prediction = model.predict(input_data) crop = label_encoder.inverse_transform(prediction)[0] return f"Recommended Crop: {crop}" demo = gr.Interface( fn=predict_crop, inputs=[ gr.Number(label="Nitrogen"), gr.Number(label="Phosphorus"), gr.Number(label="Potassium"), gr.Number(label="Temperature (°C)"), gr.Number(label="Humidity (%)"), gr.Number(label="pH"), gr.Number(label="Rainfall (mm)") ], outputs="text", title="Crop Recommendation System", description="Enter your soil and weather data to get a crop suggestion!" ) demo.launch(share=True)