Spaces:
Sleeping
Sleeping
File size: 8,411 Bytes
f8aaa9d 7c2c622 830c9fb f8aaa9d 7c2c622 830c9fb f8aaa9d 0f96bc2 f8aaa9d 0f96bc2 f8aaa9d 0f96bc2 830c9fb f8aaa9d 7c2c622 f8aaa9d 7c2c622 f8aaa9d 7c2c622 0f96bc2 7c2c622 830c9fb 7c2c622 830c9fb 7c2c622 0f96bc2 7c2c622 830c9fb 7c2c622 0f96bc2 7c2c622 f8aaa9d 7c2c622 0f96bc2 f8aaa9d 0f96bc2 f8aaa9d 7c2c622 0f96bc2 7c2c622 0f96bc2 f8aaa9d 0f96bc2 7c2c622 0f96bc2 f8aaa9d 7c2c622 f8aaa9d 7c2c622 f8aaa9d 7c2c622 0f96bc2 f8aaa9d 0f96bc2 830c9fb 0f96bc2 3f2c22a 0f96bc2 f8aaa9d 0f96bc2 7c2c622 f8aaa9d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 |
import os
import json
import tempfile
import requests
import gradio as gr
import cv2
from pytube import YouTube
from google import genai
from google.genai import types
from google.genai.types import Part
from tenacity import retry, stop_after_attempt, wait_random_exponential
# Retrieve API key from environment variables.
GOOGLE_API_KEY = os.environ.get("GOOGLE_API_KEY")
if not GOOGLE_API_KEY:
raise ValueError("Please set the GOOGLE_API_KEY environment variable.")
# Initialize the Gemini API client via AI Studio using the API key.
client = genai.Client(api_key=GOOGLE_API_KEY)
# Use the Gemini 2.0 Flash model.
MODEL_NAME = "gemini-2.0-flash-001"
@retry(wait=wait_random_exponential(multiplier=1, max=60), stop=stop_after_attempt(3))
def call_gemini(video_url: str, prompt: str) -> str:
"""
Call the Gemini model with the provided video URL and prompt.
The video is passed as a URI part with MIME type "video/webm".
"""
response = client.models.generate_content(
model=MODEL_NAME,
contents=[
Part.from_uri(file_uri=video_url, mime_type="video/webm"),
prompt,
],
)
return response.text
def hhmmss_to_seconds(time_str: str) -> float:
"""
Convert a HH:MM:SS formatted string into seconds.
"""
parts = time_str.strip().split(":")
parts = [float(p) for p in parts]
if len(parts) == 3:
return parts[0]*3600 + parts[1]*60 + parts[2]
elif len(parts) == 2:
return parts[0]*60 + parts[1]
else:
return parts[0]
def download_video(video_url: str) -> str:
"""
Download the video from a URL (either YouTube or direct link) and return the local file path.
"""
local_file = None
if "youtube.com" in video_url or "youtu.be" in video_url:
yt = YouTube(video_url)
stream = yt.streams.filter(file_extension="mp4", progressive=True).first()
if stream is None:
raise ValueError("No suitable mp4 stream found on YouTube.")
temp_file = tempfile.NamedTemporaryFile(suffix=".mp4", delete=False)
stream.stream_to_buffer(temp_file)
temp_file.flush()
local_file = temp_file.name
temp_file.close()
else:
# Assume it's a direct link to a video file, download using requests.
response = requests.get(video_url, stream=True)
if response.status_code == 200:
temp_file = tempfile.NamedTemporaryFile(suffix=".mp4", delete=False)
for chunk in response.iter_content(chunk_size=8192):
if chunk:
temp_file.write(chunk)
temp_file.flush()
local_file = temp_file.name
temp_file.close()
else:
raise ValueError("Failed to download video, status code: " + str(response.status_code))
return local_file
def get_key_frames(video_url: str, analysis: str, user_query: str) -> list:
"""
Prompt Gemini to return key frame timestamps (in HH:MM:SS) with descriptions,
then extract those frames from the downloaded video file using OpenCV.
Returns a list of tuples: (image_array, caption)
"""
prompt = (
"Based on the following video analysis, identify key frames that best illustrate "
"the important events or anomalies. Return a JSON array where each element is an object "
"with two keys: 'timestamp' (in HH:MM:SS format) and 'description' (a brief explanation of why "
"this frame is important)."
)
prompt += f" Video Analysis: {analysis}"
if user_query:
prompt += f" Additional focus: {user_query}"
try:
key_frames_response = call_gemini(video_url, prompt)
# Attempt to parse the output as JSON.
key_frames = json.loads(key_frames_response)
if not isinstance(key_frames, list):
key_frames = []
except Exception as e:
key_frames = []
extracted_frames = []
local_path = None
try:
local_path = download_video(video_url)
cap = cv2.VideoCapture(local_path)
if not cap.isOpened():
print("Error: Could not open video from local file.")
return extracted_frames
for frame_obj in key_frames:
ts = frame_obj.get("timestamp")
description = frame_obj.get("description", "")
try:
seconds = hhmmss_to_seconds(ts)
except Exception:
continue
# Set video position (in milliseconds)
cap.set(cv2.CAP_PROP_POS_MSEC, seconds * 1000)
ret, frame = cap.read()
if ret:
# Convert BGR to RGB
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
caption = f"{ts}: {description}"
extracted_frames.append((frame_rgb, caption))
cap.release()
finally:
if local_path and os.path.exists(local_path):
os.remove(local_path)
return extracted_frames
def analyze_video(video_url: str, user_query: str) -> (str, list):
"""
Perform iterative, agentic video analysis.
First, refine the video analysis over several iterations.
Then, prompt the model to identify key frames.
Returns:
- A Markdown report as a string.
- A gallery list of key frames (each as a tuple of (image, caption)).
"""
analysis = ""
num_iterations = 3
for i in range(num_iterations):
base_prompt = (
"You are a video analysis agent focusing on security and surveillance. "
"Provide a detailed summary of the video, highlighting key events, suspicious activities, or anomalies."
)
if user_query:
base_prompt += f" Also, focus on the following query: {user_query}"
if i == 0:
prompt = base_prompt
else:
prompt = (
f"Based on the previous analysis: \"{analysis}\". "
"Provide further elaboration and refined insights, focusing on potential security threats, anomalous events, "
"and details that would help a security team understand the situation better."
)
if user_query:
prompt += f" Remember to focus on: {user_query}"
try:
analysis = call_gemini(video_url, prompt)
except Exception as e:
analysis += f"\n[Error during iteration {i+1}: {e}]"
break
# Create a Markdown report
markdown_report = f"## Video Analysis Report\n\n**Summary:**\n\n{analysis}\n"
# Get key frames based on the analysis and optional query.
key_frames_gallery = get_key_frames(video_url, analysis, user_query)
if not key_frames_gallery:
markdown_report += "\n*No key frames were extracted.*\n"
else:
markdown_report += "\n**Key Frames Extracted:**\n"
for idx, (img, caption) in enumerate(key_frames_gallery, start=1):
markdown_report += f"- **Frame {idx}:** {caption}\n"
return markdown_report, key_frames_gallery
def gradio_interface(video_url: str, user_query: str) -> (str, list):
"""
Gradio interface function that accepts a video URL and an optional query,
then returns a Markdown report and a gallery of key frame images with captions.
"""
if not video_url:
return "Please provide a valid video URL.", []
return analyze_video(video_url, user_query)
iface = gr.Interface(
fn=gradio_interface,
inputs=[
gr.Textbox(label="Video URL (publicly accessible, e.g., YouTube link or direct video file URL)"),
gr.Textbox(label="Analysis Query (optional): guide the focus of the analysis", placeholder="e.g., focus on unusual movements near the entrance")
],
outputs=[
gr.Markdown(label="Security & Surveillance Analysis Report"),
gr.Gallery(label="Extracted Key Frames", columns=2)
],
title="AI Video Analysis and Summariser Agent",
description=(
"This agentic video analysis tool uses Google's Gemini 2.0 Flash model via AI Studio "
"to iteratively analyze a video for security and surveillance insights. Provide a video URL and, optionally, "
"a query to guide the analysis. The tool returns a detailed Markdown report along with a gallery of key frame images."
)
)
if __name__ == "__main__":
iface.launch()
|