import gradio as gr from google import genai from google.genai import types from PIL import Image from io import BytesIO import base64 import os import json import random import urllib.parse import time # Initialize the Google Generative AI client with the API key from environment variables try: api_key = os.environ['GEMINI_API_KEY'] except KeyError: raise ValueError("Please set the GEMINI_API_KEY environment variable.") client = genai.Client(api_key=api_key) def clean_response_text(response_text): """ Clean the API response by removing Markdown code block markers. Args: response_text (str): The raw response text from the API. Returns: str: The cleaned response text. """ cleaned_text = response_text.strip() if cleaned_text.startswith("```json"): cleaned_text = cleaned_text[len("```json"):].strip() if cleaned_text.endswith("```"): cleaned_text = cleaned_text[:-len("```")].strip() return cleaned_text def generate_ideas(user_input): """ Generate a diverse set of ideas based on the user's input concept using the LLM. Validate the relevance of each idea using a cheaper LLM (gemini-2.0-flash-lite). Args: user_input (str): The user's input concept or idea (e.g., "blindfolded Rubik's Cube challenge"). Returns: list: A list of ideas as strings. """ # Step 1: Generate ideas using gemini-2.0-flash prompt = f""" The user has provided the concept: "{user_input}". You must generate 5 diverse and creative ideas for a TikTok video that are directly and explicitly related to "{user_input}". Each idea must clearly incorporate and focus on the core theme of "{user_input}" without deviating into unrelated topics. Each idea should be a short sentence describing a specific scene or concept. Return the response as a JSON object with a single key 'ideas' containing a list of 5 ideas. Ensure the response is strictly in JSON format. Example for "blindfolded Rubik's Cube challenge": {{"ideas": [ "A blindfolded speedcubing competition with dramatic music", "A close-up of a person solving a Rubik's Cube blindfolded under a spotlight", "A time-lapse of a blindfolded Rubik's Cube solve with colorful lighting", "A blindfolded Rubik's Cube challenge in a futuristic setting", "A split-screen of two people racing to solve a Rubik's Cube blindfolded" ]}} """ try: response = client.models.generate_content( model='gemini-2.0-flash', contents=[prompt], config=types.GenerateContentConfig(temperature=1.2) ) print(f"Raw response for ideas: {response.text}") # Debugging if not response.text or response.text.isspace(): raise ValueError("Empty response from API") cleaned_text = clean_response_text(response.text) response_json = json.loads(cleaned_text) if 'ideas' not in response_json or not isinstance(response_json['ideas'], list) or len(response_json['ideas']) != 5: raise ValueError("Invalid JSON format: 'ideas' key missing, not a list, or incorrect length") ideas = response_json['ideas'] # Step 2: Validate relevance of each idea using gemini-2.0-flash-lite for idea in ideas: validation_prompt = f""" Determine if the following idea for a TikTok video is related to the user's concept. User's concept: "{user_input}" Idea: "{idea}" Respond with a JSON object containing a single key 'is_related' with a boolean value (true or false). Example: {{"is_related": true}} """ try: validation_response = client.models.generate_content( model='gemini-2.0-flash-lite', contents=[validation_prompt], config=types.GenerateContentConfig(temperature=0.0) # Low temperature for deterministic output ) print(f"Validation response for idea '{idea}': {validation_response.text}") # Debugging if not validation_response.text or validation_response.text.isspace(): raise ValueError("Empty validation response from API") cleaned_validation_text = clean_response_text(validation_response.text) validation_json = json.loads(cleaned_validation_text) if 'is_related' not in validation_json or not isinstance(validation_json['is_related'], bool): raise ValueError("Invalid validation JSON format: 'is_related' key missing or not a boolean") if not validation_json['is_related']: print(f"Idea '{idea}' is not related to '{user_input}'. Falling back to default ideas.") return [ f"A dramatic {user_input} scene with cinematic lighting", f"A close-up of {user_input} in a futuristic setting", f"A high-energy {user_input} moment with vibrant colors", f"A serene {user_input} scene with soft focus", f"An action-packed {user_input} challenge with dynamic angles" ] except Exception as e: print(f"Error validating idea '{idea}': {e}. Falling back to default ideas.") return [ f"A dramatic {user_input} scene with cinematic lighting", f"A close-up of {user_input} in a futuristic setting", f"A high-energy {user_input} moment with vibrant colors", f"A serene {user_input} scene with soft focus", f"An action-packed {user_input} challenge with dynamic angles" ] # All ideas are related, return them return ideas except Exception as e: print(f"Error generating ideas: {e}") return [ f"A dramatic {user_input} scene with cinematic lighting", f"A close-up of {user_input} in a futuristic setting", f"A high-energy {user_input} moment with vibrant colors", f"A serene {user_input} scene with soft focus", f"An action-packed {user_input} challenge with dynamic angles" ] def generate_item(user_input, ideas, generate_video=False, max_retries=3): """ Generate a single feed item (image and optionally one video) using one of the ideas. Args: user_input (str): The user's input concept or idea. ideas (list): List of ideas to choose from. generate_video (bool): Whether to generate a video from the image. max_retries (int): Maximum number of retries for image generation per cycle. Returns: dict: A dictionary with 'text' (str), 'image_base64' (str), 'video_base64' (str or None), and 'ideas' (list). """ video_base64 = None max_total_attempts = 3 # Maximum total attempts for combined image and video generation cycles total_attempts = 0 while total_attempts < max_total_attempts: total_attempts += 1 # Step 1: Generate an image (retry up to max_retries times) for image_attempt in range(max_retries): selected_idea = random.choice(ideas) prompt = f""" The user has provided the concept: "{user_input}". Based on this concept and the specific idea "{selected_idea}", create content for a TikTok video. Return a JSON object with two keys: - 'caption': A short, viral TikTok-style caption with hashtags that reflects "{user_input}". - 'image_prompt': A detailed image prompt for generating a high-quality visual scene, ensuring the theme of "{user_input}" is central. The image prompt should describe the scene vividly, specify a perspective and style, and ensure no text or letters are included. Ensure the response is strictly in JSON format. Example: {{"caption": "Blindfolded Rubik's Cube MAGIC! 🤯 #rubiks", "image_prompt": "A close-up view of a person solving a Rubik's Cube blindfolded, in a dramatic style, no text or letters"}} """ try: response = client.models.generate_content( model='gemini-2.0-flash', contents=[prompt], config=types.GenerateContentConfig(temperature=1.2) ) print(f"Raw response for item (image attempt {image_attempt + 1}, total attempt {total_attempts}): {response.text}") # Debugging if not response.text or response.text.isspace(): raise ValueError("Empty response from API") cleaned_text = clean_response_text(response.text) response_json = json.loads(cleaned_text) if 'caption' not in response_json or 'image_prompt' not in response_json: raise ValueError("Invalid JSON format: 'caption' or 'image_prompt' key missing") text = response_json['caption'] image_prompt = response_json['image_prompt'] except Exception as e: print(f"Error generating item (image attempt {image_attempt + 1}, total attempt {total_attempts}): {e}") text = f"Amazing {user_input}! 🔥 #{user_input.replace(' ', '')}" image_prompt = f"A vivid scene of {selected_idea} related to {user_input}, in a vibrant pop art style, no text or letters" # Attempt to generate the image try: imagen = client.models.generate_images( model='imagen-3.0-generate-002', prompt=image_prompt, config=types.GenerateImagesConfig( aspect_ratio="9:16", number_of_images=1 ) ) if imagen.generated_images and len(imagen.generated_images) > 0: generated_image = imagen.generated_images[0] image = Image.open(BytesIO(generated_image.image.image_bytes)) # Ensure the image matches the desired aspect ratio (9:16 = 0.5625) target_width = 360 target_height = int(target_width / 9 * 16) # 9:16 aspect ratio image = image.resize((target_width, target_height), Image.LANCZOS) # Convert image to base64 buffered = BytesIO() image.save(buffered, format="PNG") img_str = base64.b64encode(buffered.getvalue()).decode() break # Successfully generated image, exit image retry loop else: print(f"Image generation failed (image attempt {image_attempt + 1}, total attempt {total_attempts}): No images returned") if image_attempt == max_retries - 1: # Last image attempt in this cycle, use a gray placeholder if max total attempts not reached if total_attempts == max_total_attempts: image = Image.new('RGB', (360, 640), color='gray') buffered = BytesIO() image.save(buffered, format="PNG") img_str = base64.b64encode(buffered.getvalue()).decode() return { 'text': text, 'image_base64': img_str, 'video_base64': None, 'ideas': ideas } # Otherwise, select a new idea and retry image generation in the next cycle continue except Exception as e: print(f"Error generating image (image attempt {image_attempt + 1}, total attempt {total_attempts}): {e}") if image_attempt == max_retries - 1: # Last image attempt in this cycle if total_attempts == max_total_attempts: # Max total attempts reached, use a gray placeholder image = Image.new('RGB', (360, 640), color='gray') buffered = BytesIO() image.save(buffered, format="PNG") img_str = base64.b64encode(buffered.getvalue()).decode() return { 'text': text, 'image_base64': img_str, 'video_base64': None, 'ideas': ideas } # Otherwise, select a new idea and retry image generation in the next cycle continue # Step 2: Generate video if enabled (with retries using the same image) if generate_video: max_video_retries_per_image = 1 # Try video generation twice per image for video_attempt in range(max_video_retries_per_image): try: # Base video prompt video_prompt_base = f""" The user concept is "{user_input}". Based on this and the scene: {image_prompt}, create a video. Use a close-up shot with a slow dolly shot circling around the subject, using shallow focus on the main subject to emphasize details, in a realistic style with cinematic lighting. """ # Modify the prompt slightly for each retry if video_attempt == 0: video_prompt = video_prompt_base else: video_prompt = f""" The user concept is "{user_input}". Based on this and a simplified scene: {image_prompt}, create a video. Use a static close-up shot of the subject in a realistic style. """ print(f"Attempting video generation (video attempt {video_attempt + 1}, total attempt {total_attempts}): {video_prompt}") operation = client.models.generate_videos( model="veo-2.0-generate-001", prompt=video_prompt, image=generated_image.image, config=types.GenerateVideosConfig( aspect_ratio="9:16", number_of_videos=1, duration_seconds=8, negative_prompt="blurry, low quality, text, letters" ) ) # Wait for video to generate while not operation.done: time.sleep(20) operation = client.operations.get(operation) # Enhanced error handling for video generation response if operation.error: raise ValueError(f"Video generation operation failed with error: {operation.error.message}") if operation.response is None: raise ValueError("Video generation operation failed: No response") if not hasattr(operation.response, 'generated_videos') or operation.response.generated_videos is None: raise ValueError("Video generation operation failed: No generated_videos in response") # Process the single generated video if len(operation.response.generated_videos) > 0: video = operation.response.generated_videos[0] if video is None or not hasattr(video, 'video'): raise ValueError("Video is invalid or missing video data") fname = 'with_image_input.mp4' print(f"Generated video: {fname}") # Download the video and get the raw bytes video_data = client.files.download(file=video.video) # Ensure video_data is in bytes if isinstance(video_data, bytes): video_bytes = video_data else: # If video_data is a file-like object, read the bytes video_buffer = BytesIO() for chunk in video_data: video_buffer.write(chunk) video_bytes = video_buffer.getvalue() # Encode the video bytes as base64 video_base64 = base64.b64encode(video_bytes).decode() # Successfully generated video, return the result return { 'text': text, 'image_base64': img_str, 'video_base64': video_base64, 'ideas': ideas } else: raise ValueError("No video was generated") except Exception as e: print(f"Error generating video (video attempt {video_attempt + 1}, total attempt {total_attempts}): {e}") if video_attempt == max_video_retries_per_image - 1: if total_attempts == max_total_attempts: print("Max total attempts reached. Proceeding without video.") video_base64 = None return { 'text': text, 'image_base64': img_str, 'video_base64': video_base64, 'ideas': ideas } # Video generation failed with this image, break to outer loop to try a new image print(f"Video generation failed after {max_video_retries_per_image} attempts with this image. Selecting a new idea and generating a new image.") break continue # Retry video generation with the same image but a modified prompt # If video generation is not enabled or succeeded, return the result return { 'text': text, 'image_base64': img_str, 'video_base64': video_base64, 'ideas': ideas } # If max total attempts reached without success, use a gray placeholder image print("Max total attempts reached without successful image generation. Using placeholder.") image = Image.new('RGB', (360, 640), color='gray') buffered = BytesIO() image.save(buffered, format="PNG") img_str = base64.b64encode(buffered.getvalue()).decode() return { 'text': f"Amazing {user_input}! 🔥 #{user_input.replace(' ', '')}", 'image_base64': img_str, 'video_base64': None, 'ideas': ideas } def start_feed(user_input, generate_video, current_index, feed_items): """ Start or update the feed based on the user input. Args: user_input (str): The user's input concept or idea. generate_video (bool): Whether to generate a video. current_index (int): The current item index. feed_items (list): The current list of feed items. Returns: tuple: (current_user_input, current_index, feed_items, html_content, share_links, is_loading) """ if not user_input.strip(): user_input = "trending" # Update current_user_input with the new user_input current_user_input = user_input # Set loading state is_loading = True html_content = generate_html([], False, 0, user_input, is_loading) share_links = "" try: ideas = generate_ideas(user_input) item = generate_item(user_input, ideas, generate_video=generate_video) feed_items = [item] current_index = 0 share_links = generate_share_links( item['image_base64'], item['video_base64'], item['text'] ) except Exception as e: print(f"Error in start_feed: {e}") feed_items = [] current_index = 0 html_content = """
Error generating content. Please try again!
Error generating content. Please try again!
Download the media to share:
Enter a concept or idea to start your feed!