LLMFeed / app.py
codelion's picture
Update app.py
02a494e verified
raw
history blame
28.5 kB
import gradio as gr
from google import genai
from google.genai import types
from PIL import Image
from io import BytesIO
import base64
import os
import json
import random
import urllib.parse
import time
# Initialize the Google Generative AI client with the API key from environment variables
try:
api_key = os.environ['GEMINI_API_KEY']
except KeyError:
raise ValueError("Please set the GEMINI_API_KEY environment variable.")
client = genai.Client(api_key=api_key)
def clean_response_text(response_text):
"""
Clean the API response by removing Markdown code block markers.
Args:
response_text (str): The raw response text from the API.
Returns:
str: The cleaned response text.
"""
cleaned_text = response_text.strip()
if cleaned_text.startswith("```json"):
cleaned_text = cleaned_text[len("```json"):].strip()
if cleaned_text.endswith("```"):
cleaned_text = cleaned_text[:-len("```")].strip()
return cleaned_text
def generate_ideas(user_input):
"""
Generate a diverse set of ideas based on the user's input concept using the LLM.
Args:
user_input (str): The user's input concept or idea (e.g., "blindfolded Rubik's Cube challenge").
Returns:
list: A list of ideas as strings.
"""
prompt = f"""
The user has provided the concept: "{user_input}". Based on this concept, generate a list of 5 diverse and creative ideas for a TikTok video that directly relate to "{user_input}".
Each idea should be a short sentence describing a specific scene or concept, ensuring the core theme of "{user_input}" is central to each idea.
Return the response as a JSON object with a single key 'ideas' containing a list of 5 ideas.
Ensure the response is strictly in JSON format.
Example: {{"ideas": ["A neon-lit Rubik's Cube challenge in the dark", "A blindfolded speedcubing competition with dramatic music"]}}
"""
try:
response = client.models.generate_content(
model='gemini-2.0-flash',
contents=[prompt],
config=types.GenerateContentConfig(temperature=1.2)
)
print(f"Raw response for ideas: {response.text}") # Debugging
if not response.text or response.text.isspace():
raise ValueError("Empty response from API")
cleaned_text = clean_response_text(response.text)
response_json = json.loads(cleaned_text)
if 'ideas' not in response_json or not isinstance(response_json['ideas'], list):
raise ValueError("Invalid JSON format: 'ideas' key missing or not a list")
return response_json['ideas']
except Exception as e:
print(f"Error generating ideas: {e}")
return [
f"A dramatic {user_input} scene with cinematic lighting",
f"A close-up of {user_input} in a futuristic setting",
f"A high-energy {user_input} moment with vibrant colors",
f"A serene {user_input} scene with soft focus",
f"An action-packed {user_input} challenge with dynamic angles"
]
def generate_item(user_input, ideas, generate_video=False, max_retries=3):
"""
Generate a single feed item (image and optionally video) using one of the ideas.
Args:
user_input (str): The user's input concept or idea.
ideas (list): List of ideas to choose from.
generate_video (bool): Whether to generate a video from the image.
max_retries (int): Maximum number of retries if image generation fails.
Returns:
dict: A dictionary with 'text' (str), 'image_base64' (str), 'video_base64_list' (list of str), and 'ideas' (list).
"""
video_base64_list = []
for attempt in range(max_retries):
selected_idea = random.choice(ideas)
prompt = f"""
The user has provided the concept: "{user_input}". Based on this concept and the specific idea "{selected_idea}", create content for a TikTok video.
Return a JSON object with two keys:
- 'caption': A short, viral TikTok-style caption with hashtags that reflects "{user_input}".
- 'image_prompt': A detailed image prompt for generating a high-quality visual scene, ensuring the theme of "{user_input}" is central.
The image prompt should describe the scene vividly, specify a perspective and style, and ensure no text or letters are included.
Ensure the response is strictly in JSON format.
Example: {{"caption": "Blindfolded Rubik's Cube MAGIC! 🤯 #rubiks", "image_prompt": "A close-up view of a person solving a Rubik's Cube blindfolded, in a dramatic style, no text or letters"}}
"""
try:
response = client.models.generate_content(
model='gemini-2.0-flash',
contents=[prompt],
config=types.GenerateContentConfig(temperature=1.2)
)
print(f"Raw response for item (attempt {attempt + 1}): {response.text}") # Debugging
if not response.text or response.text.isspace():
raise ValueError("Empty response from API")
cleaned_text = clean_response_text(response.text)
response_json = json.loads(cleaned_text)
if 'caption' not in response_json or 'image_prompt' not in response_json:
raise ValueError("Invalid JSON format: 'caption' or 'image_prompt' key missing")
text = response_json['caption']
image_prompt = response_json['image_prompt']
except Exception as e:
print(f"Error generating item (attempt {attempt + 1}): {e}")
text = f"Amazing {user_input}! 🔥 #{user_input.replace(' ', '')}"
image_prompt = f"A vivid scene of {selected_idea} related to {user_input}, in a vibrant pop art style, no text or letters"
# Attempt to generate the image
try:
imagen = client.models.generate_images(
model='imagen-3.0-generate-002',
prompt=image_prompt,
config=types.GenerateImagesConfig(
aspect_ratio="9:16",
number_of_images=1
)
)
if imagen.generated_images and len(imagen.generated_images) > 0:
generated_image = imagen.generated_images[0]
image = Image.open(BytesIO(generated_image.image.image_bytes))
# Ensure the image matches the desired aspect ratio (9:16 = 0.5625)
target_width = 360
target_height = int(target_width / 9 * 16) # 9:16 aspect ratio
image = image.resize((target_width, target_height), Image.LANCZOS)
# Convert image to base64
buffered = BytesIO()
image.save(buffered, format="PNG")
img_str = base64.b64encode(buffered.getvalue()).decode()
# Generate video if enabled
if generate_video:
try:
# Enhance the image prompt for video generation
video_prompt = f"""
The user concept is "{user_input}". Based on this and the scene: {image_prompt}, create a video.
Use a close-up shot with a slow dolly shot circling around the subject,
using shallow focus on the main subject to emphasize details, in a realistic style with cinematic lighting.
"""
operation = client.models.generate_videos(
model="veo-2.0-generate-001",
prompt=video_prompt,
image=generated_image.image,
config=types.GenerateVideosConfig(
aspect_ratio="9:16",
number_of_videos=2,
duration_seconds=8,
negative_prompt="blurry, low quality, text, letters",
enhance_prompt=True
)
)
# Wait for videos to generate
while not operation.done:
time.sleep(20)
operation = client.operations.get(operation)
# Check if operation succeeded and has a valid response
if operation.response is None:
raise ValueError("Video generation operation failed: No response")
if not hasattr(operation.response, 'generated_videos'):
raise ValueError("Video generation operation failed: No generated_videos in response")
for n, video in enumerate(operation.response.generated_videos):
fname = f'with_image_input{n}.mp4'
print(f"Generated video: {fname}")
client.files.download(file=video.video)
video_buffer = BytesIO()
video.video.save(video_buffer)
video_base64 = base64.b64encode(video_buffer.getvalue()).decode()
video_base64_list.append(video_base64)
except Exception as e:
print(f"Error generating video: {e}")
video_base64_list = [] # Proceed without video if generation fails
return {
'text': text,
'image_base64': img_str,
'video_base64_list': video_base64_list,
'ideas': ideas
}
else:
print(f"Image generation failed (attempt {attempt + 1}): No images returned")
if attempt == max_retries - 1:
# Last attempt, use a gray placeholder
image = Image.new('RGB', (360, 640), color='gray')
buffered = BytesIO()
image.save(buffered, format="PNG")
img_str = base64.b64encode(buffered.getvalue()).decode()
return {
'text': text,
'image_base64': img_str,
'video_base64_list': [],
'ideas': ideas
}
# Retry with new ideas
ideas = generate_ideas(user_input)
continue
except Exception as e:
print(f"Error generating image (attempt {attempt + 1}): {e}")
if attempt == max_retries - 1:
# Last attempt, use a gray placeholder
image = Image.new('RGB', (360, 640), color='gray')
buffered = BytesIO()
image.save(buffered, format="PNG")
img_str = base64.b64encode(buffered.getvalue()).decode()
return {
'text': text,
'image_base64': img_str,
'video_base64_list': [],
'ideas': ideas
}
# Retry with new ideas
ideas = generate_ideas(user_input)
continue
def start_feed(user_input, generate_video, current_index, feed_items):
"""
Start or update the feed based on the user input.
Args:
user_input (str): The user's input concept or idea.
generate_video (bool): Whether to generate a video.
current_index (int): The current item index.
feed_items (list): The current list of feed items.
Returns:
tuple: (current_user_input, current_index, feed_items, html_content, share_links, is_loading)
"""
if not user_input.strip():
user_input = "trending"
# Set loading state
is_loading = True
html_content = generate_html([], False, 0, user_input, is_loading)
share_links = ""
try:
ideas = generate_ideas(user_input)
item = generate_item(user_input, ideas, generate_video=generate_video)
feed_items = [item]
current_index = 0
share_links = generate_share_links(
item['image_base64'],
item['video_base64_list'],
item['text']
)
except Exception as e:
print(f"Error in start_feed: {e}")
feed_items = []
current_index = 0
html_content = """
<div style="
display: flex;
flex-direction: column;
align-items: center;
justify-content: center;
max-width: 360px;
margin: 0 auto;
background-color: #000;
height: 640px;
border: 1px solid #333;
border-radius: 10px;
color: white;
font-family: Arial, sans-serif;
">
<p>Error generating content. Please try again!</p>
</div>
"""
is_loading = False
return user_input, current_index, feed_items, html_content, share_links, is_loading
# Set loading state to False and update UI
is_loading = False
html_content = generate_html(feed_items, False, current_index, user_input, is_loading)
return user_input, current_index, feed_items, html_content, share_links, is_loading
def load_next(user_input, generate_video, current_index, feed_items):
"""
Load the next item in the feed.
Args:
user_input (str): The user's input concept or idea.
generate_video (bool): Whether to generate a video.
current_index (int): The current item index.
feed_items (list): The current list of feed items.
Returns:
tuple: (current_user_input, current_index, feed_items, html_content, share_links, is_loading)
"""
is_loading = True
html_content = generate_html(feed_items, False, current_index, user_input, is_loading)
share_links = ""
try:
if current_index + 1 < len(feed_items):
current_index += 1
else:
ideas = feed_items[-1]['ideas'] if feed_items else generate_ideas(user_input)
new_item = generate_item(user_input, ideas, generate_video=generate_video)
feed_items.append(new_item)
current_index = len(feed_items) - 1
share_links = generate_share_links(
feed_items[current_index]['image_base64'],
feed_items[current_index]['video_base64_list'],
feed_items[current_index]['text']
)
except Exception as e:
print(f"Error in load_next: {e}")
html_content = """
<div style="
display: flex;
flex-direction: column;
align-items: center;
justify-content: center;
max-width: 360px;
margin: 0 auto;
background-color: #000;
height: 640px;
border: 1px solid #333;
border-radius: 10px;
color: white;
font-family: Arial, sans-serif;
">
<p>Error generating content. Please try again!</p>
</div>
"""
is_loading = False
return user_input, current_index, feed_items, html_content, share_links, is_loading
is_loading = False
html_content = generate_html(feed_items, False, current_index, user_input, is_loading)
return user_input, current_index, feed_items, html_content, share_links, is_loading
def load_previous(user_input, generate_video, current_index, feed_items):
"""
Load the previous item in the feed.
Args:
user_input (str): The user's input concept or idea.
generate_video (bool): Whether to generate a video (not used here).
current_index (int): The current item index.
feed_items (list): The current list of feed items.
Returns:
tuple: (current_user_input, current_index, feed_items, html_content, share_links, is_loading)
"""
if current_index > 0:
current_index -= 1
html_content = generate_html(feed_items, False, current_index, user_input, False)
share_links = generate_share_links(
feed_items[current_index]['image_base64'],
feed_items[current_index]['video_base64_list'],
feed_items[current_index]['text']
)
return user_input, current_index, feed_items, html_content, share_links, False
def generate_share_links(image_base64, video_base64_list, caption):
"""
Generate share links for social media platforms with download links for image and video.
Args:
image_base64 (str): The base64-encoded image data.
video_base64_list (list): List of base64-encoded video data.
caption (str): The caption to share.
Returns:
str: HTML string with share links and download instructions.
"""
image_data_url = f"data:image/png;base64,{image_base64}"
encoded_caption = urllib.parse.quote(caption)
# Generate download links for image and videos
download_links = f"""
<p style="text-align: center;">Download and attach the image/video to share:</p>
<a href="{image_data_url}" download="feed_item.png" style="
background-color: #4CAF50;
color: white;
padding: 5px 10px;
border-radius: 5px;
text-decoration: none;
margin: 5px;
">Download Image</a>
"""
for i, video_base64 in enumerate(video_base64_list):
video_data_url = f"data:video/mp4;base64,{video_base64}"
download_links += f"""
<a href="{video_data_url}" download="feed_video_{i}.mp4" style="
background-color: #4CAF50;
color: white;
padding: 5px 10px;
border-radius: 5px;
text-decoration: none;
margin: 5px;
">Download Video {i+1}</a>
"""
# Generate share links using only the caption
share_links = f"""
<div style="
display: flex;
flex-direction: column;
align-items: center;
gap: 10px;
margin-top: 10px;
color: white;
font-family: Arial, sans-serif;
">
{download_links}
<div style="
display: flex;
flex-wrap: wrap;
justify-content: center;
gap: 10px;
margin-top: 10px;
">
<a href="https://www.tiktok.com/upload?caption={caption}" target="_blank" style="
background-color: #00f2ea;
color: #000;
padding: 5px 10px;
border-radius: 5px;
text-decoration: none;
">Share on TikTok</a>
<a href="https://www.instagram.com/?caption={caption}" target="_blank" style="
background-color: #e1306c;
color: white;
padding: 5px 10px;
border-radius: 5px;
text-decoration: none;
">Share on Instagram</a>
<a href="https://www.facebook.com/sharer/sharer.php?quote={caption}" target="_blank" style="
background-color: #4267b2;
color: white;
padding: 5px 10px;
border-radius: 5px;
text-decoration: none;
">Share on Facebook</a>
<a href="https://twitter.com/intent/tweet?text={caption}" target="_blank" style="
background-color: #1da1f2;
color: white;
padding: 5px 10px;
border-radius: 5px;
text-decoration: none;
">Share on X</a>
<a href="https://pinterest.com/pin/create/button/?description={caption}" target="_blank" style="
background-color: #bd081c;
color: white;
padding: 5px 10px;
border-radius: 5px;
text-decoration: none;
">Share on Pinterest</a>
</div>
</div>
"""
return share_links
def generate_html(feed_items, scroll_to_latest=False, current_index=0, user_input="", is_loading=False):
"""
Generate an HTML string to display the current feed item with click navigation.
Args:
feed_items (list): List of dictionaries containing 'text' and 'image_base64'.
scroll_to_latest (bool): Whether to auto-scroll to the latest item (not used here).
current_index (int): The index of the item to display.
user_input (str): The user's input concept or idea for loading messages.
is_loading (bool): Whether the feed is currently loading.
Returns:
str: HTML string representing the feed.
"""
loading_messages = [
f"Cooking up a {user_input} masterpiece... 🍳",
f"Snapping a vibrant {user_input} moment... 📸",
f"Creating a {user_input} vibe that pops... ✨",
f"Getting that perfect {user_input} shot... 🎥",
f"Bringing {user_input} to life... 🌟"
]
if is_loading:
return f"""
<div id="feed-container" style="
display: flex;
flex-direction: column;
align-items: center;
justify-content: center;
max-width: 360px;
margin: 0 auto;
background-color: #000;
height: 640px;
border: 1px solid #333;
border-radius: 10px;
color: white;
font-family: Arial, sans-serif;
position: relative;
">
<div id="loading-message" style="
font-size: 18px;
font-weight: bold;
text-align: center;
margin-bottom: 20px;
text-shadow: 1px 1px 2px rgba(0,0,0,0.5);
">
{loading_messages[0]}
</div>
<div style="
width: 80%;
height: 10px;
background-color: #333;
border-radius: 5px;
overflow: hidden;
">
<div style="
width: 0%;
height: 100%;
background: linear-gradient(to right, #ff2d55, #ff5e78);
animation: loading 2s infinite;
"></div>
</div>
<style>
@keyframes loading {{
0% {{ width: 0%; }}
50% {{ width: 100%; }}
100% {{ width: 0%; }}
}}
</style>
<script>
const messages = {json.dumps(loading_messages)};
let currentMessageIndex = 0;
const messageElement = document.getElementById('loading-message');
function rotateMessages() {{
currentMessageIndex = (currentMessageIndex + 1) % messages.length;
messageElement.textContent = messages[currentMessageIndex];
}}
setInterval(rotateMessages, 2000);
</script>
</div>
"""
if not feed_items or current_index >= len(feed_items):
return """
<div style="
display: flex;
flex-direction: column;
align-items: center;
justify-content: center;
max-width: 360px;
margin: 0 auto;
background-color: #000;
height: 640px;
border: 1px solid #333;
border-radius: 10px;
color: white;
font-family: Arial, sans-serif;
">
<p>Enter a concept or idea to start your feed!</p>
</div>
"""
item = feed_items[current_index]
html_str = """
<div id="feed-container" style="
display: flex;
flex-direction: column;
align-items: center;
max-width: 360px;
margin: 0 auto;
background-color: #000;
height: 640px;
border: 1px solid #333;
border-radius: 10px;
position: relative;
">
<div class="feed-item" style="
width: 100%;
height: 100%;
position: relative;
display: flex;
flex-direction: column;
justify-content: flex-end;
overflow: hidden;
cursor: pointer;
" onclick="handleClick(event)">
<img id="feed-image" src="data:image/png;base64,{image_base64}" style="
width: 100%;
height: 100%;
object-fit: cover;
position: absolute;
top: 0;
left: 0;
z-index: 1;
">
<div style="
position: relative;
z-index: 2;
background: linear-gradient(to top, rgba(0,0,0,0.7), transparent);
padding: 20px;
color: white;
font-family: Arial, sans-serif;
font-size: 18px;
font-weight: bold;
text-shadow: 1px 1px 2px rgba(0,0,0,0.5);
">
{text}
</div>
</div>
</div>
<script>
function handleClick(event) {{
const image = document.getElementById('feed-image');
const rect = image.getBoundingClientRect();
const clickX = event.clientX - rect.left;
const width = rect.width;
if (clickX > width * 0.75) {{
document.getElementById('previous-button').click();
}}
}}
</script>
<button id="previous-button" style="display: none;" onclick="document.getElementById('previous-button').click()"></button>
""".format(image_base64=item['image_base64'], text=item['text'])
return html_str
# Define the Gradio interface
with gr.Blocks(
css="""
body { background-color: #000; color: #fff; font-family: Arial, sans-serif; }
.gradio-container { max-width: 400px; margin: 0 auto; padding: 10px; }
input, select, button, .gr-checkbox { border-radius: 5px; background-color: #222; color: #fff; border: 1px solid #444; }
button { background-color: #ff2d55; border: none; }
button:hover { background-color: #e0264b; }
.gr-button { width: 100%; margin-top: 10px; }
.gr-form { background-color: #111; padding: 15px; border-radius: 10px; }
""",
title="Create Your Feed"
) as demo:
# State variables
current_user_input = gr.State(value="")
current_index = gr.State(value=0)
feed_items = gr.State(value=[])
is_loading = gr.State(value=False)
share_links = gr.State(value="")
# Input section
with gr.Column(elem_classes="gr-form"):
gr.Markdown("### Create Your Feed")
user_input = gr.Textbox(
label="Enter Concept or Ideas",
value="",
placeholder="e.g., sushi adventure, neon tech",
submit_btn=False
)
generate_video_checkbox = gr.Checkbox(
label="Generate Video (may take longer)",
value=False
)
magic_button = gr.Button("✨ Generate Next Item", elem_classes="gr-button")
# Output display
feed_html = gr.HTML()
share_html = gr.HTML(label="Share this item:")
# Event handlers
# Handle Enter keypress in the concept input
user_input.submit(
fn=start_feed,
inputs=[user_input, generate_video_checkbox, current_index, feed_items],
outputs=[current_user_input, current_index, feed_items, feed_html, share_html, is_loading]
)
# Handle magic button click to generate next item
magic_button.click(
fn=load_next,
inputs=[current_user_input, generate_video_checkbox, current_index, feed_items],
outputs=[current_user_input, current_index, feed_items, feed_html, share_html, is_loading]
)
# Hidden button for previous item navigation
previous_button = gr.Button("Previous", elem_id="previous-button", visible=False)
# Handle click to go to previous item
previous_button.click(
fn=load_previous,
inputs=[current_user_input, generate_video_checkbox, current_index, feed_items],
outputs=[current_user_input, current_index, feed_items, feed_html, share_html, is_loading]
)
# Launch the app
demo.launch()