File size: 8,986 Bytes
9b90da9 279374e 9b90da9 86ea854 f756321 9b90da9 86ea854 9b90da9 f756321 86ea854 f756321 86ea854 f756321 86ea854 f756321 86ea854 f756321 86ea854 4a8bcb2 f756321 4a8bcb2 86ea854 f756321 86ea854 f756321 86ea854 f756321 86ea854 d6f0f11 9b90da9 86ea854 9b90da9 4a8bcb2 9b90da9 4a8bcb2 86ea854 f756321 4a8bcb2 9b90da9 86ea854 f756321 9b90da9 f756321 9b90da9 f756321 9b90da9 f756321 9b90da9 f756321 9b90da9 f756321 9b90da9 f756321 9b90da9 86ea854 f756321 86ea854 f756321 86ea854 f756321 86ea854 f756321 86ea854 f756321 86ea854 f756321 9b90da9 f756321 86ea854 9b90da9 86ea854 f756321 9b90da9 86ea854 9b90da9 86ea854 9b90da9 86ea854 9b90da9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 |
import gradio as gr
from google import genai
from google.genai import types
from PIL import Image
from io import BytesIO
import base64
import os
import json
import random
# Initialize the Google Generative AI client with the API key from environment variables
try:
api_key = os.environ['GEMINI_API_KEY']
except KeyError:
raise ValueError("Please set the GEMINI_API_KEY environment variable.")
client = genai.Client(api_key=api_key)
def generate_item(tag, item_index):
"""
Generate a single feed item with diverse text and image.
Args:
tag (str): The tag to base the content on.
item_index (int): Index of the item to ensure diversity.
Returns:
dict: A dictionary with 'text' (str) and 'image_base64' (str).
"""
# Define varied styles for diversity in image generation
styles = [
"futuristic neon lighting",
"soft pastel tones with a dreamy vibe",
"vibrant and colorful pop art style",
"minimalist black and white aesthetic",
"retro 80s synthwave look",
"golden hour sunlight with warm tones"
]
perspectives = [
"a close-up view",
"a wide-angle shot",
"an aerial perspective",
"a side profile",
"a dynamic angled shot"
]
style = random.choice(styles)
perspective = random.choice(perspectives)
# Generate text with high temperature for diversity
prompt = f"""
Generate a short, engaging TikTok-style caption about {tag}.
Return the response as a JSON object with a single key 'caption' containing the caption text.
Example: {{"caption": "Craving this yummy treat! 😍 #foodie"}}
Do not include additional commentary or options.
Use creative and varied language to ensure uniqueness.
"""
text_response = client.models.generate_content(
model='gemini-2.5-flash-preview-04-17',
contents=[prompt],
generation_config={"temperature": 1.2} # High temperature for diversity
)
# Parse JSON response to extract the caption
try:
response_json = json.loads(text_response.text.strip())
text = response_json['caption']
except (json.JSONDecodeError, KeyError):
text = f"Obsessed with {tag}! 🔥 #{tag}" # Fallback caption
# Generate a diverse image based on the tag
image_prompt = f"""
A high-quality visual scene representing {tag}, designed for a TikTok video.
The image should be {perspective} with a {style}.
Ensure the image is colorful, engaging, and has no text or letters.
"""
image_response = client.models.generate_images(
model='imagen-3.0-generate-002',
prompt=image_prompt,
config=types.GenerateImagesConfig(
number_of_images=1,
aspect_ratio="9:16",
person_generation="DONT_ALLOW"
)
)
# Check if images were generated
if image_response.generated_images and len(image_response.generated_images) > 0:
generated_image = image_response.generated_images[0]
image = Image.open(BytesIO(generated_image.image.image_bytes))
else:
# Fallback to a placeholder image
image = Image.new('RGB', (360, 640), color='gray') # 9:16 aspect ratio
# Convert the image to base64
buffered = BytesIO()
image.save(buffered, format="PNG")
img_str = base64.b64encode(buffered.getvalue()).decode()
return {'text': text, 'image_base64': img_str}
def start_feed(tag):
"""
Start a new feed with the given tag by generating one initial item.
Args:
tag (str): The tag to generate content for.
Returns:
tuple: (current_tag, feed_items, html_content)
"""
if not tag.strip():
tag = "trending"
item = generate_item(tag, 0)
feed_items = [item]
html_content = generate_html(feed_items)
return tag, feed_items, html_content
def load_more(current_tag, feed_items):
"""
Append a new item to the existing feed and scroll to the latest item.
Args:
current_tag (str): The tag currently being used for the feed.
feed_items (list): The current list of feed items.
Returns:
tuple: (current_tag, updated_feed_items, updated_html_content)
"""
new_item = generate_item(current_tag, len(feed_items))
feed_items.append(new_item)
html_content = generate_html(feed_items, scroll_to_latest=True)
return current_tag, feed_items, html_content
def generate_html(feed_items, scroll_to_latest=False):
"""
Generate an HTML string to display the feed items in a TikTok-like carousel.
Args:
feed_items (list): List of dictionaries containing 'text' and 'image_base64'.
scroll_to_latest (bool): Whether to auto-scroll to the latest item.
Returns:
str: HTML string representing the feed.
"""
html_str = """
<div id="feed-container" style="
display: flex;
flex-direction: column;
align-items: center;
max-width: 360px;
margin: 0 auto;
background-color: #000;
height: 640px;
overflow-y: scroll;
scroll-snap-type: y mandatory;
scrollbar-width: none;
-ms-overflow-style: none;
border: 1px solid #333;
border-radius: 10px;
">
"""
# Hide scrollbar
html_str += """
<style>
#feed-container::-webkit-scrollbar {
display: none;
}
.feed-item {
scroll-snap-align: start;
}
</style>
"""
for idx, item in enumerate(feed_items):
html_str += f"""
<div class="feed-item" id="item-{idx}" style="
width: 100%;
height: 640px;
position: relative;
display: flex;
flex-direction: column;
justify-content: flex-end;
overflow: hidden;
">
<img src="data:image/png;base64,{item['image_base64']}" style="
width: 100%;
height: 100%;
object-fit: cover;
position: absolute;
top: 0;
left: 0;
z-index: 1;
">
<div style="
position: relative;
z-index: 2;
background: linear-gradient(to top, rgba(0,0,0,0.7), transparent);
padding: 20px;
color: white;
font-family: Arial, sans-serif;
font-size: 18px;
font-weight: bold;
text-shadow: 1px 1px 2px rgba(0,0,0,0.5);
">
{item['text']}
</div>
</div>
"""
html_str += "</div>"
# Auto-scroll to the latest item if requested
if scroll_to_latest and feed_items:
html_str += f"""
<script>
document.getElementById('item-{len(feed_items) - 1}').scrollIntoView({{ behavior: 'smooth' }});
</script>
"""
return html_str
# Define the Gradio interface
with gr.Blocks(
css="""
body { background-color: #000; color: #fff; font-family: Arial, sans-serif; }
.gradio-container { max-width: 400px; margin: 0 auto; padding: 10px; }
input, select, button { border-radius: 5px; background-color: #222; color: #fff; border: 1px solid #444; }
button { background-color: #ff2d55; border: none; }
button:hover { background-color: #e0264b; }
.gr-button { width: 100%; margin-top: 10px; }
.gr-form { background-color: #111; padding: 15px; border-radius: 10px; }
""",
title="TikTok-Style Infinite Feed"
) as demo:
# Input section
with gr.Column(elem_classes="gr-form"):
gr.Markdown("### Create Your TikTok Feed")
with gr.Row():
suggested_tags = gr.Dropdown(
choices=["food", "travel", "fashion", "tech"],
label="Pick a Tag",
value="food"
)
tag_input = gr.Textbox(
label="Or Enter a Custom Tag",
value="food",
placeholder="e.g., sushi, adventure"
)
with gr.Row():
start_button = gr.Button("Start Feed")
load_more_button = gr.Button("Load More")
# Output display
feed_html = gr.HTML()
# State variables
current_tag = gr.State(value="")
feed_items = gr.State(value=[])
# Event handlers
def set_tag(selected_tag):
"""Update the tag input when a suggested tag is selected."""
return selected_tag
suggested_tags.change(fn=set_tag, inputs=suggested_tags, outputs=tag_input)
start_button.click(
fn=start_feed,
inputs=tag_input,
outputs=[current_tag, feed_items, feed_html]
)
load_more_button.click(
fn=load_more,
inputs=[current_tag, feed_items],
outputs=[current_tag, feed_items, feed_html]
)
# Launch the app
demo.launch() |