Spaces:
Configuration error
Configuration error
File size: 6,415 Bytes
bd199cf d7aa376 d473aed d7aa376 bd199cf 8a7960d 6ed83ba d473aed 6ed83ba d473aed 8a7960d 6ed83ba d473aed 6ed83ba bd199cf d7aa376 bd199cf 8a7960d b1ae048 bd199cf 8a7960d bd199cf b1ae048 bd199cf d7aa376 10da2a6 d7aa376 10da2a6 bd199cf d473aed bd199cf d473aed bd199cf c08f91e 183f9b8 c08f91e bd199cf c08f91e cba9a1b c08f91e bd199cf c08f91e d7aa376 c08f91e d7aa376 83e18ee a18a949 d473aed 83e18ee c08f91e 83e18ee d473aed c08f91e 83e18ee 0354639 d7aa376 42077b5 c08f91e d473aed d7aa376 83e18ee bd199cf c4f7e78 83e18ee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 |
import gradio as gr
import torch
from torchvision import transforms
from SDXL.diff_pipe import StableDiffusionXLDiffImg2ImgPipeline
from diffusers import DPMSolverMultistepScheduler
# DepthAnything
import cv2
import numpy as np
import os
from PIL import Image
import torch.nn.functional as F
from torchvision.transforms import Compose
import tempfile
from gradio_imageslider import ImageSlider
from depth_anything.depth_anything.dpt import DepthAnything
from depth_anything.depth_anything.util.transform import Resize, NormalizeImage, PrepareForNet
NUM_INFERENCE_STEPS = 50
dtype = torch.float16
if torch.cuda.is_available():
DEVICE = "cuda"
elif torch.backends.mps.is_available():
DEVICE = "mps"
dtype = torch.float32
else:
DEVICE = "cpu"
#device = "cuda"
encoder = 'vitl' # can also be 'vitb' or 'vitl'
model = DepthAnything.from_pretrained(f"LiheYoung/depth_anything_{encoder}14").to(DEVICE).eval()
base = StableDiffusionXLDiffImg2ImgPipeline.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=dtype, variant="fp16", use_safetensors=True
)
refiner = StableDiffusionXLDiffImg2ImgPipeline.from_pretrained(
"stabilityai/stable-diffusion-xl-refiner-1.0",
text_encoder_2=base.text_encoder_2,
vae=base.vae,
torch_dtype=dtype,
use_safetensors=True,
variant="fp16",
)
base.scheduler = DPMSolverMultistepScheduler.from_config(base.scheduler.config)
refiner.scheduler = DPMSolverMultistepScheduler.from_config(base.scheduler.config)
# DepthAnything
transform = Compose([
Resize(
width=518,
height=518,
resize_target=False,
keep_aspect_ratio=True,
ensure_multiple_of=14,
resize_method='lower_bound',
image_interpolation_method=cv2.INTER_CUBIC,
),
NormalizeImage(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
PrepareForNet(),
])
@torch.no_grad()
def predict_depth(model, image):
return model(image)
def depthify(image):
original_image = image.copy()
h, w = image.shape[:2]
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) / 255.0
image = transform({'image': image})['image']
image = torch.from_numpy(image).unsqueeze(0).to(DEVICE)
depth = predict_depth(model, image)
depth = F.interpolate(depth[None], (h, w), mode='bilinear', align_corners=False)[0, 0]
raw_depth = Image.fromarray(depth.cpu().numpy().astype('uint8'))
tmp = tempfile.NamedTemporaryFile(suffix='.png', delete=False)
raw_depth.save(tmp.name)
depth = (depth - depth.min()) / (depth.max() - depth.min()) * 255.0
depth = depth.cpu().numpy().astype(np.uint8)
colored_depth = cv2.applyColorMap(depth, cv2.COLORMAP_INFERNO)[:, :, ::-1]
return [(original_image, colored_depth), tmp.name, raw_depth]
# DifferentialDiffusion
def preprocess_image(image_array):
image = Image.fromarray(image_array)
image = image.convert("RGB")
image = transforms.CenterCrop((image.size[1] // 64 * 64, image.size[0] // 64 * 64))(image)
image = transforms.ToTensor()(image)
image = image * 2 - 1
image = image.unsqueeze(0).to(DEVICE)
return image
def preprocess_map(map):
map = map.convert("L")
map = transforms.CenterCrop((map.size[1] // 64 * 64, map.size[0] // 64 * 64))(map)
# convert to tensor
map = transforms.ToTensor()(map)
map = map.to(DEVICE)
return map
def inference(
image,
map,
guidance_scale,
prompt,
negative_prompt,
steps,
denoising_start,
denoising_end
):
validate_inputs(image, map)
image = preprocess_image(image)
map = preprocess_map(map)
base_device = base.to(DEVICE)
edited_images = base_device(
prompt=prompt,
original_image=image,
image=image,
strength=1,
guidance_scale=guidance_scale,
num_images_per_prompt=1,
negative_prompt=negative_prompt,
map=map,
num_inference_steps=steps,
denoising_end=denoising_end,
output_type="latent"
).images
base_device=None
refiner_device = refiner.to(DEVICE)
edited_images = refiner_device(
prompt=prompt,
original_image=image,
image=edited_images,
strength=1,
guidance_scale=guidance_scale,
num_images_per_prompt=1,
negative_prompt=negative_prompt,
map=map,
num_inference_steps=steps,
denoising_start=denoising_start
).images[0]
refiner_device=None
return edited_images
def validate_inputs(image, map):
if image is None:
raise gr.Error("Missing image")
if map is None:
raise gr.Error("Missing map")
def run(image, gs, prompt, neg_prompt, steps, denoising_start, denoising_end):
# first run
[(original_image, colored_depth), name, raw_depth] = depthify(image)
print(f"original_image={original_image} colored_depth={colored_depth}, name={name}, raw_depth={raw_depth}")
return raw_depth, inference(original_image, raw_depth, gs, prompt, neg_prompt, steps, denoising_start, denoising_end)
with gr.Blocks() as demo:
with gr.Row():
with gr.Column():
with gr.Row():
input_image = gr.Image(label="Input Image")
# change_map = gr.Image(label="Change Map", type="pil")
gs = gr.Slider(0, 28, value=7.5, label="Guidance Scale")
steps = gr.Number(value=50, label="Steps")
denoising_start = gr.Slider(0, 1, value=0.8, label="Denoising Start")
denoising_end = gr.Slider(0, 1, value=0.8, label="Denoising End")
prompt = gr.Textbox(label="Prompt")
neg_prompt = gr.Textbox(label="Negative Prompt")
with gr.Row():
# clr_btn=gr.ClearButton(components=[input_image, change_map, gs, prompt, neg_prompt])
clr_btn=gr.ClearButton(components=[input_image, gs, prompt, neg_prompt, steps, denoising_start, denoising_end])
run_btn = gr.Button("Run",variant="primary")
with gr.Column():
output = gr.Image(label="Output Image")
change_map = gr.Image(label="Change Map")
run_btn.click(
run,
#inference,
inputs=[input_image, gs, prompt, neg_prompt, steps, denoising_start, denoising_end],
outputs=[change_map, output]
)
clr_btn.add(output)
if __name__ == "__main__":
demo.launch()
|