Spaces:
Sleeping
Sleeping
Update main.py
Browse filesBetter plotting
main.py
CHANGED
@@ -2,6 +2,7 @@ import numpy
|
|
2 |
import keras
|
3 |
import gradio
|
4 |
import matplotlib.pyplot
|
|
|
5 |
|
6 |
# Building the neural network
|
7 |
model1 = keras.models.Sequential()
|
@@ -28,6 +29,9 @@ model1.add(keras.layers.Conv2D(3, (9, 9), activation='tanh', padding='same'))
|
|
28 |
#Loading the weights in the architecture (The file should be stored in the same directory as the code)
|
29 |
model1.load_weights('modelV13_500trained_1.h5')
|
30 |
|
|
|
|
|
|
|
31 |
#simple image scaling to (nR x nC) size
|
32 |
def scale(im, nR, nC):
|
33 |
nR0 = len(im) # source number of rows
|
@@ -37,15 +41,22 @@ def scale(im, nR, nC):
|
|
37 |
|
38 |
|
39 |
def predict(mask):
|
40 |
-
|
41 |
-
cm = matplotlib.pyplot.get_cmap('RdBu')
|
42 |
-
|
43 |
-
scaled_mask = numpy.round(scale(mask, 101, 636)/255.0)
|
44 |
print(scaled_mask)
|
45 |
X = scaled_mask[numpy.newaxis, :, :, numpy.newaxis]
|
46 |
v = model1.predict(X)
|
47 |
-
|
48 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
|
50 |
with gradio.Blocks() as demo:
|
51 |
|
@@ -66,7 +77,8 @@ with gradio.Blocks() as demo:
|
|
66 |
exx = gradio.Image(label="ε-xx")
|
67 |
eyy = gradio.Image(label="ε-yy")
|
68 |
exy = gradio.Image(label="ε-xy")
|
|
|
69 |
|
70 |
-
btn.click(fn=predict, inputs=[mask], outputs=[exx, eyy, exy])
|
71 |
|
72 |
demo.launch(debug=True)
|
|
|
2 |
import keras
|
3 |
import gradio
|
4 |
import matplotlib.pyplot
|
5 |
+
import matplotlib.colors
|
6 |
|
7 |
# Building the neural network
|
8 |
model1 = keras.models.Sequential()
|
|
|
29 |
#Loading the weights in the architecture (The file should be stored in the same directory as the code)
|
30 |
model1.load_weights('modelV13_500trained_1.h5')
|
31 |
|
32 |
+
# Get the color map by name:
|
33 |
+
cm = matplotlib.pyplot.get_cmap('RdBu')
|
34 |
+
|
35 |
#simple image scaling to (nR x nC) size
|
36 |
def scale(im, nR, nC):
|
37 |
nR0 = len(im) # source number of rows
|
|
|
41 |
|
42 |
|
43 |
def predict(mask):
|
44 |
+
scaled_mask = numpy.ones((101, 636)) if mask is None else numpy.round(scale(mask, 101, 636)/255.0)
|
|
|
|
|
|
|
45 |
print(scaled_mask)
|
46 |
X = scaled_mask[numpy.newaxis, :, :, numpy.newaxis]
|
47 |
v = model1.predict(X)
|
48 |
+
measure = max(v.max(), -v.min())
|
49 |
+
output = (v / measure)
|
50 |
+
legend = "<h2>Strain</h2><table style=\"width:100%\"><tr>"
|
51 |
+
for i in range(11):
|
52 |
+
color = cm(i/10.0)[:3]
|
53 |
+
value = -measure + i*2*measure/10
|
54 |
+
print(sum(list(color)))
|
55 |
+
hex = matplotlib.colors.to_hex(list(color))
|
56 |
+
text_color = "black" if sum(list(color)) > 2.0 else "white"
|
57 |
+
legend = legend + f"<td style=\"background-color: {hex}; color: {text_color}\">{value:+.2e}</td>"
|
58 |
+
legend = legend + "</tr></table>"
|
59 |
+
return cm((numpy.multiply(output[0, :, :, 0], scaled_mask)+1.0)/2.0), cm((numpy.multiply(output[0, :, :, 1], scaled_mask)+1.0)/2.0), cm((numpy.multiply(output[0, :, :, 2], scaled_mask)+1.0)/2.0), legend
|
60 |
|
61 |
with gradio.Blocks() as demo:
|
62 |
|
|
|
77 |
exx = gradio.Image(label="ε-xx")
|
78 |
eyy = gradio.Image(label="ε-yy")
|
79 |
exy = gradio.Image(label="ε-xy")
|
80 |
+
legend = gradio.HTML(label="", value="")
|
81 |
|
82 |
+
btn.click(fn=predict, inputs=[mask], outputs=[exx, eyy, exy, legend])
|
83 |
|
84 |
demo.launch(debug=True)
|