ccm commited on
Commit
68515dc
·
1 Parent(s): 4ec3e79

Update main.py

Browse files
Files changed (1) hide show
  1. main.py +5 -6
main.py CHANGED
@@ -28,12 +28,11 @@ model1.add(keras.layers.Conv2D(3, (9, 9), activation='tanh', padding='same'))
28
  model1.load_weights('modelV13_500trained_1.h5')
29
 
30
  def predict(mask):
31
- X = numpy.round((mask/255.0))[numpy.newaxis, :, :, numpy.newaxis]
32
- v = model1.predict(X)*255
33
- output = (v - v.min()) / (v.max() - v.min())
34
- print(output.shape)
35
- return output[0, :, :, 0], output[0, :, :, 1], output[0, :, :, 2]
36
 
37
  demo = gradio.Interface(fn=predict, inputs=gradio.Image(image_mode="L", source="canvas", tool="sketch", values=numpy.zeros(636, 101), outputs=[gradio.Image(image_mode="L"), gradio.Image(image_mode="L"), gradio.Image(image_mode="L")])
38
-
39
  demo.run()
 
28
  model1.load_weights('modelV13_500trained_1.h5')
29
 
30
  def predict(mask):
31
+ X = numpy.round((mask/255.0))[numpy.newaxis, :, :, numpy.newaxis]
32
+ v = model1.predict(X)*255
33
+ output = (v - v.min()) / (v.max() - v.min())
34
+ print(output.shape)
35
+ return output[0, :, :, 0], output[0, :, :, 1], output[0, :, :, 2]
36
 
37
  demo = gradio.Interface(fn=predict, inputs=gradio.Image(image_mode="L", source="canvas", tool="sketch", values=numpy.zeros(636, 101), outputs=[gradio.Image(image_mode="L"), gradio.Image(image_mode="L"), gradio.Image(image_mode="L")])
 
38
  demo.run()