Spaces:
Sleeping
Sleeping
Update main.py
Browse files
main.py
CHANGED
@@ -28,12 +28,11 @@ model1.add(keras.layers.Conv2D(3, (9, 9), activation='tanh', padding='same'))
|
|
28 |
model1.load_weights('modelV13_500trained_1.h5')
|
29 |
|
30 |
def predict(mask):
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
|
37 |
demo = gradio.Interface(fn=predict, inputs=gradio.Image(image_mode="L", source="canvas", tool="sketch", values=numpy.zeros(636, 101), outputs=[gradio.Image(image_mode="L"), gradio.Image(image_mode="L"), gradio.Image(image_mode="L")])
|
38 |
-
|
39 |
demo.run()
|
|
|
28 |
model1.load_weights('modelV13_500trained_1.h5')
|
29 |
|
30 |
def predict(mask):
|
31 |
+
X = numpy.round((mask/255.0))[numpy.newaxis, :, :, numpy.newaxis]
|
32 |
+
v = model1.predict(X)*255
|
33 |
+
output = (v - v.min()) / (v.max() - v.min())
|
34 |
+
print(output.shape)
|
35 |
+
return output[0, :, :, 0], output[0, :, :, 1], output[0, :, :, 2]
|
36 |
|
37 |
demo = gradio.Interface(fn=predict, inputs=gradio.Image(image_mode="L", source="canvas", tool="sketch", values=numpy.zeros(636, 101), outputs=[gradio.Image(image_mode="L"), gradio.Image(image_mode="L"), gradio.Image(image_mode="L")])
|
|
|
38 |
demo.run()
|