Spaces:
Running
Running
Update main.py
Browse files
main.py
CHANGED
@@ -1,6 +1,7 @@
|
|
1 |
import numpy
|
2 |
import keras
|
3 |
import gradio
|
|
|
4 |
|
5 |
# Building the neural network
|
6 |
model1 = keras.models.Sequential()
|
@@ -34,14 +35,16 @@ def scale(im, nR, nC):
|
|
34 |
return numpy.array([[ im[int(nR0 * r / nR)][int(nC0 * c / nC)]
|
35 |
for c in range(nC)] for r in range(nR)])
|
36 |
|
|
|
37 |
def predict(mask):
|
38 |
-
|
|
|
|
|
39 |
X = scale(mask, 101, 636)
|
40 |
X = numpy.round(X/255.0)[numpy.newaxis, :, :, numpy.newaxis]
|
41 |
-
v = model1.predict(X)
|
42 |
-
output = (v
|
43 |
-
|
44 |
-
return output[0, :, :, 0], output[0, :, :, 1], output[0, :, :, 2]
|
45 |
|
46 |
with gradio.Blocks() as demo:
|
47 |
|
@@ -59,11 +62,10 @@ with gradio.Blocks() as demo:
|
|
59 |
mask = gradio.Image(image_mode="L", source="canvas", label="microstructure")
|
60 |
|
61 |
btn = gradio.Button("Run!", variant="primary")
|
62 |
-
exx = gradio.Image(
|
63 |
-
eyy = gradio.Image(
|
64 |
-
exy = gradio.Image(
|
65 |
|
66 |
btn.click(fn=predict, inputs=[mask], outputs=[exx, eyy, exy])
|
67 |
|
68 |
-
demo.launch()
|
69 |
-
|
|
|
1 |
import numpy
|
2 |
import keras
|
3 |
import gradio
|
4 |
+
import matplotlib.pyplot
|
5 |
|
6 |
# Building the neural network
|
7 |
model1 = keras.models.Sequential()
|
|
|
35 |
return numpy.array([[ im[int(nR0 * r / nR)][int(nC0 * c / nC)]
|
36 |
for c in range(nC)] for r in range(nR)])
|
37 |
|
38 |
+
|
39 |
def predict(mask):
|
40 |
+
# Get the color map by name:
|
41 |
+
cm = matplotlib.pyplot.get_cmap('RdBu')
|
42 |
+
|
43 |
X = scale(mask, 101, 636)
|
44 |
X = numpy.round(X/255.0)[numpy.newaxis, :, :, numpy.newaxis]
|
45 |
+
v = model1.predict(X)
|
46 |
+
output = ((v / max(v.max(), -v.min()))+1.0)/2.0
|
47 |
+
return cm(output[0, :, :, 0]), cm(output[0, :, :, 1]), cm(output[0, :, :, 2])
|
|
|
48 |
|
49 |
with gradio.Blocks() as demo:
|
50 |
|
|
|
62 |
mask = gradio.Image(image_mode="L", source="canvas", label="microstructure")
|
63 |
|
64 |
btn = gradio.Button("Run!", variant="primary")
|
65 |
+
exx = gradio.Image(label="ε-xx")
|
66 |
+
eyy = gradio.Image(label="ε-yy")
|
67 |
+
exy = gradio.Image(label="ε-xy")
|
68 |
|
69 |
btn.click(fn=predict, inputs=[mask], outputs=[exx, eyy, exy])
|
70 |
|
71 |
+
demo.launch()
|
|