import numpy as np | |
from scipy import signal | |
import math | |
import matplotlib.pyplot as plt | |
import itertools | |
def basic_box_array(image_size): | |
A = np.ones((int(image_size), int(image_size))) # Initializes A matrix with 0 values | |
# Creates the outside edges of the box | |
# for i in range(image_size): | |
# for j in range(image_size): | |
# if i == 0 or j == 0 or i == image_size - 1 or j == image_size - 1: | |
# A[i][j] = 1 | |
# A[1:-1, 1:-1] = 1 | |
# np.pad(A[1:-1,1:-1], pad_width=((1, 1), (1, 1)), mode='constant', constant_values=1) | |
A[1:-1, 1:-1] = 0 | |
return A | |
def back_slash_array(image_size): | |
A = np.zeros((int(image_size), int(image_size))) # Initializes A matrix with 0 values | |
# for i in range(image_size): | |
# for j in range(image_size): | |
# if i == j: | |
# A[i][j] = 1 | |
np.fill_diagonal(A, 1) | |
return A | |
def forward_slash_array(image_size): | |
A = np.zeros((int(image_size), int(image_size))) # Initializes A matrix with 0 values | |
# for i in range(image_size): | |
# for j in range(image_size): | |
# if i == (image_size-1)-j: | |
# A[i][j] = 1 | |
np.fill_diagonal(np.fliplr(A), 1) | |
return A | |
def hot_dog_array(image_size): | |
# Places pixels down the vertical axis to split the box | |
A = np.zeros((int(image_size), int(image_size))) # Initializes A matrix with 0 values | |
# for i in range(image_size): | |
# for j in range(image_size): | |
# if j == math.floor((image_size - 1) / 2) or j == math.ceil((image_size - 1) / 2): | |
# A[i][j] = 1 | |
A[:, np.floor((image_size - 1) / 2).astype(int)] = 1 | |
A[:, np.ceil((image_size - 1) / 2).astype(int)] = 1 | |
return A | |
def hamburger_array(image_size): | |
# Places pixels across the horizontal axis to split the box | |
A = np.zeros((int(image_size), int(image_size))) # Initializes A matrix with 0 values | |
# for i in range(image_size): | |
# for j in range(image_size): | |
# if i == math.floor((image_size - 1) / 2) or i == math.ceil((image_size - 1) / 2): | |
# A[i][j] = 1 | |
A[np.floor((image_size - 1) / 2).astype(int), :] = 1 | |
A[np.ceil((image_size - 1) / 2).astype(int), :] = 1 | |
return A | |
# def update_array(array_original, array_new, image_size): | |
# A = array_original | |
# for i in range(image_size): | |
# for j in range(image_size): | |
# if array_new[i][j] == 1: | |
# A[i][j] = 1 | |
# return A | |
def update_array(array_original, array_new): | |
A = array_original | |
A[array_new == 1] = 1 | |
return A | |
# def add_pixels(array_original, additional_pixels): | |
# # Adds pixels to the thickness of each component of the box | |
# A = array_original | |
# filter = np.array(([0, 1, 0], [1, 1, 1], [0, 1, 0])) # This filter will only add value where there are pixels on | |
# # the top, bottom, left or right of a pixel | |
# | |
# # This filter adds thickness based on the desired number of additional pixels | |
# for item in range(additional_pixels): | |
# convolution = signal.convolve2d(A, filter, mode='same') | |
# A = np.where(convolution <= 1, convolution, 1) | |
# return A | |
def add_pixels(array_original, thickness): | |
A = array_original | |
# if thickness !=0: | |
# filter = np.array(([0, 1, 0], [1, 1, 1], [0, 1, 0])) | |
# filter = np.stack([filter] * additional_pixels, axis=-1) | |
filter_size = 2*thickness+1 | |
filter = np.zeros((filter_size,filter_size)) | |
filter[np.floor((filter_size - 1) / 2).astype(int), :] = filter[:, np.floor((filter_size - 1) / 2).astype(int)] =1 | |
filter[np.ceil((filter_size - 1) / 2).astype(int), :] = filter[:, np.ceil((filter_size - 1) / 2).astype(int)] = 1 | |
# filter[0,0] = filter[-1,0] = filter[0,-1] = filter[-1,-1] = 0 | |
print(filter) | |
convolution = signal.convolve2d(A, filter, mode='same') | |
A = np.where(convolution <= 1, convolution, 1) | |
return A | |
# def create_array(basic_box_thickness, forward_slash_thickness, back_slash_thickness, hamburger_thickness, hot_dog_thickness): | |
# | |
# TESTING | |
image_size = 9 | |
# test = forward_slash_array(image_size) | |
test = hamburger_array((image_size)) | |
back = back_slash_array((image_size)) | |
hot = hot_dog_array(image_size) | |
forward = forward_slash_array(image_size) | |
basic = basic_box_array((image_size)) | |
# test = update_array(test, back) | |
# test = update_array(test, hot) | |
# test = update_array(test, forward) | |
test = test + back + forward + hot + basic | |
test = np.array(test > 0, dtype=int) | |
# test = add_pixels(test, 1) | |
print(test) | |
plt.imshow(test) | |
plt.show() | |
# basic_box_thickness = np.linspace(0,14, num=15) | |
# print(basic_box_thickness) | |
# forward_slash_thickness = np.linspace(0,14, num=15) | |
# back_slash_thickness = np.linspace(0,14, num=15) | |
# hamburger_thickness = np.linspace(0,14, num=15) | |
# hot_dog_thickness =np.linspace(0,14, num=15) | |
# print(np.meshgrid((basic_box_thickness, forward_slash_thickness, back_slash_thickness, hamburger_thickness, hot_dog_thickness))) | |
# all_thicknesses = list(itertools.product(basic_box_thickness, repeat=5)) | |
# print(all_thicknesses) | |
# print(np.shape(all_thicknesses)) |