File size: 4,100 Bytes
60acf32
 
 
 
 
 
 
85321d7
cf60c45
 
 
 
 
 
 
 
85321d7
cf60c45
60acf32
 
 
cf60c45
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
60acf32
 
 
 
 
 
 
 
85321d7
 
60acf32
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
85321d7
60acf32
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cf60c45
60acf32
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
import random

import matplotlib.pyplot as plt
import pandas as pd
from datasets import load_dataset, ClassLabel, Sequence
import json
import numpy

# from transformers import AutoImageProcessor
# from torchvision.transforms import RandomResizedCrop, Compose, Normalize, ToTensor
# from transformers import DefaultDataCollator
# # import evaluate
# import numpy as np
# from transformers import AutoModelForImageClassification, TrainingArguments, Trainer
# from PIL import Image
# from matplotlib import cm

import streamlit as st
from Data_Generation.Dataset_Generation_Functions import make_boxes


x = st.slider('Select a value')
st.write(x, 'squared is', x * x)


'''
# Testing
image_size = 100
densities = [1]

boxes = make_boxes(image_size, densities)

desired_density = 1
# desired_thickness = 0

desired_basic_box_thickness = 1
desired_forward_slash_box_thickness = 2
desired_back_slash_box_thickness = 0
desired_hot_dog_box_thickness = 0
desired_hamburger_box_thickness = 0


box_arrays, box_density, basic_box_thickness, forward_slash_box_thickness, back_slash_box_thickness,hot_dog_box_thickness, hamburger_box_thickness\
    = list(zip(*boxes))[0], list(zip(*boxes))[1], list(zip(*boxes))[2], list(zip(*boxes))[3], list(zip(*boxes))[4], list(zip(*boxes))[5], list(zip(*boxes))[6]
# print(np.shape(box_arrays))
# print(np.shape(box_shape))
# print(np.shape(box_density))

indices = [i for i in range(len(box_arrays)) if box_density[i] == desired_density
           and basic_box_thickness[i] == desired_basic_box_thickness
           and forward_slash_box_thickness[i] == desired_forward_slash_box_thickness
           and back_slash_box_thickness[i] == desired_back_slash_box_thickness
           and hot_dog_box_thickness[i] == desired_hot_dog_box_thickness
           and hamburger_box_thickness[i] == desired_hamburger_box_thickness]
plt.imshow(box_arrays[indices[0]], cmap='gray', vmin=0, vmax=1)
plt.show()
'''



'''

# food = load_dataset("cmudrc/2d-lattices", split="train[:15]")  # Loads the training data samples
food = load_dataset("cmudrc/2d-lattices", split="train+test")  # Loads all of the data, for use after training

# checks to see if the dataset has been assigned a class label
# if type(food.features["label"]) != 'datasets.features.features.ClassLabel': # Cast to ClassLabel
#     food = food.class_encode_column('label')
print(food)
desired_label = 'x_plus_box'
desired_thickness = 3
desired_density = 1

data_frame = pd.DataFrame(food)
# print(data_frame)

shape_rows = data_frame['Shape'] == desired_label
# print(shape_rows)

thickness_rows = data_frame['Thickness'] == desired_thickness
# print(thickness_rows)

density_rows = data_frame['Density'] == desired_density
# print(density_rows)

desired_output = data_frame.loc[shape_rows & thickness_rows & density_rows].iloc[0]['Array']
print(desired_output)
print(type(desired_output))


example_point = numpy.array(json.loads(desired_output))

plt.imshow(example_point)
plt.show()


all_shapes = [basic_box, diagonal_box_split, horizontal_vertical_box_split, back_slash_box, forward_slash_box,
                 back_slash_plus_box, forward_slash_plus_box, hot_dog_box, hamburger_box, x_hamburger_box,
                 x_hot_dog_box, x_plus_box]

base_shapes = [basic_box, back_slash_box, forward_slash_box, hot_dog_box, hamburger_box]
image_size = 256
density = [1]

boxes = make_boxes(image_size, density, all_shapes)


box_arrays, box_shape, box_density, box_thickness,  = list(zip(*boxes))[0], list(zip(*boxes))[1], list(zip(*boxes))[2], list(zip(*boxes))[3]

# indices_1 = [i for i in range(len(boxes)) if boxes[1][i] == str(base_shapes[0]) and boxes[2][i] == density[0] and boxes[3][i] == desired_thickness]
indices_1 = [i for i in range(len(box_arrays)) if box_shape[i] == desired_label and box_density[i] == desired_density and box_thickness[i] == desired_thickness]
print(indices_1)
# indices_1 = random.randint(0, len(box_arrays))


# plt.imshow(box_arrays[indices_1])
plt.imshow(box_arrays[indices_1[0]])
plt.show()
'''

'''trainer.push_to_hub()''' # Need to figure out how to push the model to the hub