clefourrier's picture
clefourrier HF Staff
Upload folder using huggingface_hub
f4ad64c verified
from datasets import load_dataset, Dataset
from functools import lru_cache
from typing import Tuple
import gradio as gr
import json
from env import MODELS, TASK, ORG_NAME
def aggregate_results() -> list:
"""From the path of outputs and model list, extracts the current scores and stores them in a list of dicts with model, score, time as keys
"""
all_results = []
for org_model in MODELS:
try:
path = f"{ORG_NAME}/details_{org_model.replace('/', '__')}_private"
ds = load_dataset(path, "results", split="latest")
config = json.loads(ds["config_general"][0])
results = json.loads(ds["results"][0])
# Model data
org, model = org_model.split("/")
cur_result = {
"Org": org,
"Model": model,
"Duration (s)": config["end_time"] - config["start_time"]
}
# Extract the task from the JSON data
for k_metric, v_dict in results.items():
if k_metric != "all":
for k, v in v_dict.items():
cur_result[f"{k}({k_metric})"] = v
all_results.append(cur_result)
except Exception as e:
print(f"Error processing {model} {ORG_NAME}: {e}")
return all_results
def extract_dataviz() -> Tuple[list, list]:
"""From the path of outputs and model list, extracts from the details the worst samples, best samples
"""
all_samples = {}
for org_model in MODELS:
try:
path = f"{ORG_NAME}/details_{org_model.replace('/', '__')}_private"
ds = load_dataset(path, f"custom_{TASK.replace('/', '_')}_0", split="latest")
for ix, row in enumerate(ds):
prompt = row["full_prompt"]
gold = row["gold"]
score = list(row["metrics"].values())[0]
prediction = row["predictions"][0]
# We store flattened samples in a dict
# ix -> ix, prompt, gold, model_score for each model, model_prediction for each model
# then 2 lists: model_scores and models, to aggreg more easily
if ix not in all_samples:
all_samples[ix] = {
"ix": ix,
"prompt": prompt,
"gold": gold[0] if isinstance(gold, list) else gold,
# A bit redundant, but put in their own boxes for simplicity of access later
"model_scores": [],
"models": []
}
if org_model not in all_samples[ix]["models"]:
all_samples[ix][f"{org_model}_score"] = row["metrics"]
all_samples[ix][f"{org_model}_prediction"] = prediction
all_samples[ix]["model_scores"].append(score)
all_samples[ix]["models"].append(org_model)
except Exception as e:
print(f"Error processing {org_model}: {e}")
full_samples = sorted(list(all_samples.values()), key= lambda r: r['ix'])
hard_samples = sorted([sample for sample in all_samples.values() if sum(sample["model_scores"]) == 0], key= lambda r: r['ix'])
easy_samples = sorted([sample for sample in all_samples.values() if sum(sample["model_scores"]) == len(sample["model_scores"])], key= lambda r: r['ix'])
return easy_samples, hard_samples, full_samples
def samples_to_box_display(samples: list, example_index: int = 0):
"""Adapted from Nathan's code in https://huggingface.co/spaces/SaylorTwift/OpenEvalsModelDetails/
"""
if len(samples) == 0:
return "No samples in this category!"
outputs = []
sample = samples[example_index]
for model in sample["models"]:
try:
outputs.append({
'Model': model,
'Prediction': sample[f'{model}_prediction'],
'Prompt': sample['prompt'],
'Metrics': sample[f'{model}_score'],
'Gold': sample['gold']
})
except (KeyError, IndexError):
continue
if not outputs:
return "No results found for the selected combination."
# Create HTML output with all models
html_output = "<div style='max-width: 800px; margin: 0 auto;'>\n\n"
# Show gold answer at the top with distinct styling
if outputs:
html_output += "<div style='background: #e6f3e6; padding: 20px; border-radius: 10px; margin-bottom: 20px;'>\n"
html_output += "<h3 style='margin-top: 0;'>Ground Truth</h3>\n"
html_output += "<div style='overflow-x: auto; max-width: 100%;'>\n"
html_output += f"<pre style='white-space: pre-wrap; word-wrap: break-word; margin: 0;'><code>{outputs[0]['Gold']}</code></pre>\n"
html_output += "</div>\n"
html_output += "</div>\n"
for output in outputs:
html_output += "<div style='background: #f5f5f5; padding: 20px; margin-bottom: 20px; border-radius: 10px;'>\n"
html_output += f"<h2 style='margin-top: 0;'>{output['Model']}</h2>\n"
# Format metrics as a clean table
html_output += "<details open style='margin-bottom: 15px;'>\n"
html_output += "<summary><h3 style='display: inline; margin: 0;'>Metrics</h3></summary>\n"
metrics = output['Metrics']
if isinstance(metrics, str):
metrics = eval(metrics)
html_output += "<div style='overflow-x: auto;'>\n"
html_output += "<table style='width: 100%; margin: 10px 0; border-collapse: collapse;'>\n"
for key, value in metrics.items():
if isinstance(value, float):
value = f"{value:.3f}"
html_output += f"<tr><td style='padding: 5px; border-bottom: 1px solid #ddd;'><strong>{key}</strong></td><td style='padding: 5px; border-bottom: 1px solid #ddd;'>{value}</td></tr>\n"
html_output += "</table>\n"
html_output += "</div>\n"
html_output += "</details>\n\n"
# Handle prompt formatting with better styling
html_output += "<details style='margin-bottom: 15px;'>\n"
html_output += "<summary><h3 style='display: inline; margin: 0;'>Prompt</h3></summary>\n"
html_output += "<div style='background: #ffffff; padding: 15px; border-radius: 5px; margin-top: 10px;'>\n"
prompt_text = output['Prompt']
if isinstance(prompt_text, list):
for i, msg in enumerate(prompt_text):
if isinstance(msg, dict) and 'content' in msg:
role = msg.get('role', 'message').title()
html_output += "<div style='margin-bottom: 10px;'>\n"
html_output += f"<strong>{role}:</strong>\n"
html_output += "<div style='overflow-x: auto;'>\n"
html_output += f"<pre style='white-space: pre-wrap; word-wrap: break-word; margin: 5px 0;'><code>{msg['content']}</code></pre>\n"
html_output += "</div>\n"
html_output += "</div>\n"
else:
html_output += "<div style='margin-bottom: 10px;'>\n"
html_output += "<div style='overflow-x: auto;'>\n"
html_output += f"<pre style='white-space: pre-wrap; word-wrap: break-word; margin: 5px 0;'><code>{json.dumps(msg, indent=2)}</code></pre>\n"
html_output += "</div>\n"
html_output += "</div>\n"
else:
html_output += "<div style='overflow-x: auto;'>\n"
if isinstance(prompt_text, dict) and 'content' in prompt_text:
html_output += f"<pre style='white-space: pre-wrap; word-wrap: break-word; margin: 5px 0;'><code>{prompt_text['content']}</code></pre>\n"
else:
html_output += f"<pre style='white-space: pre-wrap; word-wrap: break-word; margin: 5px 0;'><code>{prompt_text}</code></pre>\n"
html_output += "</div>\n"
html_output += "</div>\n"
html_output += "</details>\n\n"
# Style prediction output - now in a collapsible section
html_output += "<details open style='margin-bottom: 15px;'>\n"
html_output += "<summary><h3 style='display: inline; margin: 0;'>Prediction</h3>"
# Add word count in a muted style
word_count = len(output['Prediction'].split())
html_output += f"<span style='color: #666; font-size: 0.8em; margin-left: 10px;'>({word_count} words)</span>"
html_output += "</summary>\n"
html_output += "<div style='background: #ffffff; padding: 15px; border-radius: 5px; margin-top: 10px;'>\n"
html_output += "<div style='overflow-x: auto;'>\n"
html_output += f"<pre style='white-space: pre-wrap; word-wrap: break-word; margin: 0;'><code>{output['Prediction']}</code></pre>\n"
html_output += "</div>\n"
html_output += "</div>\n"
html_output += "</details>\n"
html_output += "</div>\n\n"
html_output += "</div>"
return html_output
def run_pipeline(samples_ix: int = 0):
results = aggregate_results()
best_samples, worst_samples, all_samples = extract_dataviz()
return gr.Dataframe(Dataset.from_list(results).to_pandas(), visible=True), \
gr.HTML(samples_to_box_display(best_samples, samples_ix), label="Easiest samples (always found)", visible=True), \
gr.HTML(samples_to_box_display(worst_samples, samples_ix), label="Hardest samples (always failed)", visible=True), \
gr.HTML(samples_to_box_display(all_samples, samples_ix), label="All samples", visible=True)
def update_examples(samples_ix: int = 0):
best_samples, worst_samples, all_samples = extract_dataviz()
return samples_to_box_display(best_samples, samples_ix), \
samples_to_box_display(worst_samples, samples_ix), \
samples_to_box_display(all_samples, samples_ix)