|
from datasets import load_dataset, Dataset |
|
from functools import lru_cache |
|
from typing import Tuple |
|
import gradio as gr |
|
import json |
|
|
|
from env import MODELS, TASK, ORG_NAME |
|
|
|
def aggregate_results() -> list: |
|
"""From the path of outputs and model list, extracts the current scores and stores them in a list of dicts with model, score, time as keys |
|
""" |
|
all_results = [] |
|
for org_model in MODELS: |
|
try: |
|
path = f"{ORG_NAME}/details_{org_model.replace('/', '__')}_private" |
|
ds = load_dataset(path, "results", split="latest") |
|
config = json.loads(ds["config_general"][0]) |
|
results = json.loads(ds["results"][0]) |
|
|
|
|
|
org, model = org_model.split("/") |
|
|
|
cur_result = { |
|
"Org": org, |
|
"Model": model, |
|
"Duration (s)": config["end_time"] - config["start_time"] |
|
} |
|
|
|
|
|
for k_metric, v_dict in results.items(): |
|
if k_metric != "all": |
|
for k, v in v_dict.items(): |
|
cur_result[f"{k}({k_metric})"] = v |
|
all_results.append(cur_result) |
|
except Exception as e: |
|
print(f"Error processing {model} {ORG_NAME}: {e}") |
|
return all_results |
|
|
|
def extract_dataviz() -> Tuple[list, list]: |
|
"""From the path of outputs and model list, extracts from the details the worst samples, best samples |
|
""" |
|
all_samples = {} |
|
for org_model in MODELS: |
|
try: |
|
path = f"{ORG_NAME}/details_{org_model.replace('/', '__')}_private" |
|
ds = load_dataset(path, f"custom_{TASK.replace('/', '_')}_0", split="latest") |
|
|
|
for ix, row in enumerate(ds): |
|
prompt = row["full_prompt"] |
|
gold = row["gold"] |
|
score = list(row["metrics"].values())[0] |
|
prediction = row["predictions"][0] |
|
|
|
|
|
|
|
|
|
|
|
if ix not in all_samples: |
|
all_samples[ix] = { |
|
"ix": ix, |
|
"prompt": prompt, |
|
"gold": gold[0] if isinstance(gold, list) else gold, |
|
|
|
"model_scores": [], |
|
"models": [] |
|
} |
|
if org_model not in all_samples[ix]["models"]: |
|
all_samples[ix][f"{org_model}_score"] = row["metrics"] |
|
all_samples[ix][f"{org_model}_prediction"] = prediction |
|
all_samples[ix]["model_scores"].append(score) |
|
all_samples[ix]["models"].append(org_model) |
|
|
|
except Exception as e: |
|
print(f"Error processing {org_model}: {e}") |
|
|
|
full_samples = sorted(list(all_samples.values()), key= lambda r: r['ix']) |
|
hard_samples = sorted([sample for sample in all_samples.values() if sum(sample["model_scores"]) == 0], key= lambda r: r['ix']) |
|
easy_samples = sorted([sample for sample in all_samples.values() if sum(sample["model_scores"]) == len(sample["model_scores"])], key= lambda r: r['ix']) |
|
return easy_samples, hard_samples, full_samples |
|
|
|
def samples_to_box_display(samples: list, example_index: int = 0): |
|
"""Adapted from Nathan's code in https://huggingface.co/spaces/SaylorTwift/OpenEvalsModelDetails/ |
|
""" |
|
if len(samples) == 0: |
|
return "No samples in this category!" |
|
outputs = [] |
|
sample = samples[example_index] |
|
for model in sample["models"]: |
|
try: |
|
outputs.append({ |
|
'Model': model, |
|
'Prediction': sample[f'{model}_prediction'], |
|
'Prompt': sample['prompt'], |
|
'Metrics': sample[f'{model}_score'], |
|
'Gold': sample['gold'] |
|
}) |
|
except (KeyError, IndexError): |
|
continue |
|
|
|
if not outputs: |
|
return "No results found for the selected combination." |
|
|
|
|
|
html_output = "<div style='max-width: 800px; margin: 0 auto;'>\n\n" |
|
|
|
|
|
if outputs: |
|
html_output += "<div style='background: #e6f3e6; padding: 20px; border-radius: 10px; margin-bottom: 20px;'>\n" |
|
html_output += "<h3 style='margin-top: 0;'>Ground Truth</h3>\n" |
|
html_output += "<div style='overflow-x: auto; max-width: 100%;'>\n" |
|
html_output += f"<pre style='white-space: pre-wrap; word-wrap: break-word; margin: 0;'><code>{outputs[0]['Gold']}</code></pre>\n" |
|
html_output += "</div>\n" |
|
html_output += "</div>\n" |
|
|
|
for output in outputs: |
|
html_output += "<div style='background: #f5f5f5; padding: 20px; margin-bottom: 20px; border-radius: 10px;'>\n" |
|
html_output += f"<h2 style='margin-top: 0;'>{output['Model']}</h2>\n" |
|
|
|
|
|
html_output += "<details open style='margin-bottom: 15px;'>\n" |
|
html_output += "<summary><h3 style='display: inline; margin: 0;'>Metrics</h3></summary>\n" |
|
metrics = output['Metrics'] |
|
if isinstance(metrics, str): |
|
metrics = eval(metrics) |
|
html_output += "<div style='overflow-x: auto;'>\n" |
|
html_output += "<table style='width: 100%; margin: 10px 0; border-collapse: collapse;'>\n" |
|
for key, value in metrics.items(): |
|
if isinstance(value, float): |
|
value = f"{value:.3f}" |
|
html_output += f"<tr><td style='padding: 5px; border-bottom: 1px solid #ddd;'><strong>{key}</strong></td><td style='padding: 5px; border-bottom: 1px solid #ddd;'>{value}</td></tr>\n" |
|
html_output += "</table>\n" |
|
html_output += "</div>\n" |
|
html_output += "</details>\n\n" |
|
|
|
|
|
html_output += "<details style='margin-bottom: 15px;'>\n" |
|
html_output += "<summary><h3 style='display: inline; margin: 0;'>Prompt</h3></summary>\n" |
|
html_output += "<div style='background: #ffffff; padding: 15px; border-radius: 5px; margin-top: 10px;'>\n" |
|
|
|
prompt_text = output['Prompt'] |
|
if isinstance(prompt_text, list): |
|
for i, msg in enumerate(prompt_text): |
|
if isinstance(msg, dict) and 'content' in msg: |
|
role = msg.get('role', 'message').title() |
|
html_output += "<div style='margin-bottom: 10px;'>\n" |
|
html_output += f"<strong>{role}:</strong>\n" |
|
html_output += "<div style='overflow-x: auto;'>\n" |
|
html_output += f"<pre style='white-space: pre-wrap; word-wrap: break-word; margin: 5px 0;'><code>{msg['content']}</code></pre>\n" |
|
html_output += "</div>\n" |
|
html_output += "</div>\n" |
|
else: |
|
html_output += "<div style='margin-bottom: 10px;'>\n" |
|
html_output += "<div style='overflow-x: auto;'>\n" |
|
html_output += f"<pre style='white-space: pre-wrap; word-wrap: break-word; margin: 5px 0;'><code>{json.dumps(msg, indent=2)}</code></pre>\n" |
|
html_output += "</div>\n" |
|
html_output += "</div>\n" |
|
else: |
|
html_output += "<div style='overflow-x: auto;'>\n" |
|
if isinstance(prompt_text, dict) and 'content' in prompt_text: |
|
html_output += f"<pre style='white-space: pre-wrap; word-wrap: break-word; margin: 5px 0;'><code>{prompt_text['content']}</code></pre>\n" |
|
else: |
|
html_output += f"<pre style='white-space: pre-wrap; word-wrap: break-word; margin: 5px 0;'><code>{prompt_text}</code></pre>\n" |
|
html_output += "</div>\n" |
|
|
|
html_output += "</div>\n" |
|
html_output += "</details>\n\n" |
|
|
|
|
|
html_output += "<details open style='margin-bottom: 15px;'>\n" |
|
html_output += "<summary><h3 style='display: inline; margin: 0;'>Prediction</h3>" |
|
|
|
word_count = len(output['Prediction'].split()) |
|
html_output += f"<span style='color: #666; font-size: 0.8em; margin-left: 10px;'>({word_count} words)</span>" |
|
html_output += "</summary>\n" |
|
html_output += "<div style='background: #ffffff; padding: 15px; border-radius: 5px; margin-top: 10px;'>\n" |
|
html_output += "<div style='overflow-x: auto;'>\n" |
|
html_output += f"<pre style='white-space: pre-wrap; word-wrap: break-word; margin: 0;'><code>{output['Prediction']}</code></pre>\n" |
|
html_output += "</div>\n" |
|
html_output += "</div>\n" |
|
html_output += "</details>\n" |
|
html_output += "</div>\n\n" |
|
|
|
html_output += "</div>" |
|
return html_output |
|
|
|
def run_pipeline(samples_ix: int = 0): |
|
results = aggregate_results() |
|
best_samples, worst_samples, all_samples = extract_dataviz() |
|
return gr.Dataframe(Dataset.from_list(results).to_pandas(), visible=True), \ |
|
gr.HTML(samples_to_box_display(best_samples, samples_ix), label="Easiest samples (always found)", visible=True), \ |
|
gr.HTML(samples_to_box_display(worst_samples, samples_ix), label="Hardest samples (always failed)", visible=True), \ |
|
gr.HTML(samples_to_box_display(all_samples, samples_ix), label="All samples", visible=True) |
|
|
|
def update_examples(samples_ix: int = 0): |
|
best_samples, worst_samples, all_samples = extract_dataviz() |
|
return samples_to_box_display(best_samples, samples_ix), \ |
|
samples_to_box_display(worst_samples, samples_ix), \ |
|
samples_to_box_display(all_samples, samples_ix) |