Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,32 +1,42 @@
|
|
1 |
import gradio as gr
|
2 |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
3 |
from datasets import load_dataset
|
|
|
4 |
|
5 |
-
# Load the WikiSQL dataset
|
6 |
-
wikisql_dataset = load_dataset("wikisql", split='train')
|
7 |
|
8 |
# Load tokenizer and model
|
9 |
tokenizer = AutoTokenizer.from_pretrained("mrm8488/t5-base-finetuned-wikiSQL")
|
10 |
model = AutoModelForSeq2SeqLM.from_pretrained("mrm8488/t5-base-finetuned-wikiSQL")
|
11 |
|
|
|
|
|
|
|
|
|
|
|
12 |
def generate_sql_from_user_input(query):
|
13 |
-
#
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
# Create a Gradio interface
|
21 |
interface = gr.Interface(
|
22 |
fn=generate_sql_from_user_input,
|
23 |
inputs=gr.Textbox(label="Enter your natural language query"),
|
24 |
-
outputs=[gr.Textbox(label="
|
25 |
title="NL to SQL with T5 using WikiSQL Dataset",
|
26 |
-
description="This model
|
27 |
)
|
28 |
|
29 |
# Launch the app
|
30 |
if __name__ == "__main__":
|
31 |
interface.launch()
|
32 |
-
|
|
|
1 |
import gradio as gr
|
2 |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
3 |
from datasets import load_dataset
|
4 |
+
from difflib import get_close_matches
|
5 |
|
6 |
+
# Load the WikiSQL dataset
|
7 |
+
wikisql_dataset = load_dataset("wikisql", split='train[:100]') # Load a subset of the dataset
|
8 |
|
9 |
# Load tokenizer and model
|
10 |
tokenizer = AutoTokenizer.from_pretrained("mrm8488/t5-base-finetuned-wikiSQL")
|
11 |
model = AutoModelForSeq2SeqLM.from_pretrained("mrm8488/t5-base-finetuned-wikiSQL")
|
12 |
|
13 |
+
def find_closest_match(query, dataset):
|
14 |
+
questions = [item['question'] for item in dataset]
|
15 |
+
matches = get_close_matches(query, questions, n=1)
|
16 |
+
return matches[0] if matches else None
|
17 |
+
|
18 |
def generate_sql_from_user_input(query):
|
19 |
+
# Find the closest match in the dataset
|
20 |
+
matched_query = find_closest_match(query, wikisql_dataset)
|
21 |
+
if not matched_query:
|
22 |
+
return "No close match found in the dataset.", ""
|
23 |
+
|
24 |
+
# Find the corresponding SQL query in the dataset
|
25 |
+
for item in wikisql_dataset:
|
26 |
+
if item['question'] == matched_query:
|
27 |
+
return matched_query, item['sql']['human_readable']
|
28 |
+
|
29 |
+
return "Match found, but corresponding SQL query not found in dataset.", ""
|
30 |
|
31 |
# Create a Gradio interface
|
32 |
interface = gr.Interface(
|
33 |
fn=generate_sql_from_user_input,
|
34 |
inputs=gr.Textbox(label="Enter your natural language query"),
|
35 |
+
outputs=[gr.Textbox(label="Matched Query from Dataset"), gr.Textbox(label="Corresponding SQL Query from Dataset")],
|
36 |
title="NL to SQL with T5 using WikiSQL Dataset",
|
37 |
+
description="This model finds the closest match in the WikiSQL dataset for your query and returns the corresponding SQL query from the dataset."
|
38 |
)
|
39 |
|
40 |
# Launch the app
|
41 |
if __name__ == "__main__":
|
42 |
interface.launch()
|
|