Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -2,20 +2,21 @@ import gradio as gr
|
|
2 |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
3 |
from datasets import load_dataset
|
4 |
|
5 |
-
# Load the
|
6 |
-
|
7 |
|
8 |
# Extract schema information from the dataset
|
9 |
table_names = set()
|
10 |
column_names = set()
|
11 |
-
for item in
|
12 |
-
|
13 |
-
|
14 |
-
|
|
|
15 |
|
16 |
# Load tokenizer and model
|
17 |
-
tokenizer = AutoTokenizer.from_pretrained("mrm8488/t5-base-finetuned-wikiSQL")
|
18 |
-
model = AutoModelForSeq2SeqLM.from_pretrained("mrm8488/t5-base-finetuned-wikiSQL")
|
19 |
|
20 |
def post_process_sql_query(sql_query):
|
21 |
# Modify the SQL query to match the dataset's schema
|
@@ -45,8 +46,8 @@ interface = gr.Interface(
|
|
45 |
fn=generate_sql_from_user_input,
|
46 |
inputs=gr.Textbox(label="Enter your natural language query"),
|
47 |
outputs=gr.Textbox(label="Generated SQL Query"),
|
48 |
-
title="NL to SQL with T5 using
|
49 |
-
description="This model generates an SQL query for your natural language input based on the
|
50 |
)
|
51 |
|
52 |
# Launch the app
|
|
|
2 |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
3 |
from datasets import load_dataset
|
4 |
|
5 |
+
# Load the Spider dataset
|
6 |
+
spider_dataset = load_dataset("spider", split='train') # Load a subset of the dataset
|
7 |
|
8 |
# Extract schema information from the dataset
|
9 |
table_names = set()
|
10 |
column_names = set()
|
11 |
+
for item in spider_dataset:
|
12 |
+
for table in item['db']['table_names_original']:
|
13 |
+
table_names.add(table)
|
14 |
+
for column in item['db']['column_names_original']:
|
15 |
+
column_names.add(column[1])
|
16 |
|
17 |
# Load tokenizer and model
|
18 |
+
tokenizer = AutoTokenizer.from_pretrained("mrm8488/t5-base-finetuned-wikiSQL") # Update this to a model fine-tuned on Spider if available
|
19 |
+
model = AutoModelForSeq2SeqLM.from_pretrained("mrm8488/t5-base-finetuned-wikiSQL") # Update this to a model fine-tuned on Spider if available
|
20 |
|
21 |
def post_process_sql_query(sql_query):
|
22 |
# Modify the SQL query to match the dataset's schema
|
|
|
46 |
fn=generate_sql_from_user_input,
|
47 |
inputs=gr.Textbox(label="Enter your natural language query"),
|
48 |
outputs=gr.Textbox(label="Generated SQL Query"),
|
49 |
+
title="NL to SQL with T5 using Spider Dataset",
|
50 |
+
description="This model generates an SQL query for your natural language input based on the Spider dataset."
|
51 |
)
|
52 |
|
53 |
# Launch the app
|