Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -5,50 +5,35 @@ from datasets import load_dataset
|
|
5 |
# Load the Spider dataset
|
6 |
spider_dataset = load_dataset("spider", split='train') # Load a subset of the dataset
|
7 |
|
8 |
-
# Extract schema information from the dataset
|
9 |
-
db_table_names = set()
|
10 |
-
column_names = set()
|
11 |
-
for item in spider_dataset:
|
12 |
-
db_id = item['db_id']
|
13 |
-
for table in item['table_names']:
|
14 |
-
db_table_names.add((db_id, table))
|
15 |
-
for column in item['column_names']:
|
16 |
-
column_names.add(column[1])
|
17 |
-
|
18 |
# Load tokenizer and model
|
19 |
tokenizer = AutoTokenizer.from_pretrained("mrm8488/t5-base-finetuned-wikiSQL")
|
20 |
model = AutoModelForSeq2SeqLM.from_pretrained("mrm8488/t5-base-finetuned-wikiSQL")
|
21 |
|
22 |
-
def post_process_sql_query(sql_query):
|
23 |
-
# Modify the SQL query to match the dataset's schema
|
24 |
-
# This is just an example and might need to be adapted based on the dataset and model output
|
25 |
-
for db_id, table_name in db_table_names:
|
26 |
-
if "TABLE" in sql_query:
|
27 |
-
sql_query = sql_query.replace("TABLE", table_name)
|
28 |
-
break # Assuming only one table is referenced in the query
|
29 |
-
for column_name in column_names:
|
30 |
-
if "COLUMN" in sql_query:
|
31 |
-
sql_query = sql_query.replace("COLUMN", column_name, 1)
|
32 |
-
return sql_query
|
33 |
-
|
34 |
def generate_sql_from_user_input(query):
|
35 |
# Generate SQL for the user's query
|
36 |
input_text = "translate English to SQL: " + query
|
37 |
inputs = tokenizer(input_text, return_tensors="pt", padding=True)
|
38 |
outputs = model.generate(**inputs, max_length=512)
|
39 |
sql_query = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
40 |
-
|
41 |
-
# Post-process the SQL query to match the dataset's schema
|
42 |
-
sql_query = post_process_sql_query(sql_query)
|
43 |
return sql_query
|
44 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
# Create a Gradio interface
|
46 |
interface = gr.Interface(
|
47 |
-
fn=
|
|
|
|
|
|
|
48 |
inputs=gr.Textbox(label="Enter your natural language query"),
|
49 |
-
outputs=gr.Textbox(label="Generated SQL Query"),
|
50 |
title="NL to SQL with T5 using Spider Dataset",
|
51 |
-
description="This model generates an SQL query for your natural language input
|
52 |
)
|
53 |
|
54 |
# Launch the app
|
|
|
5 |
# Load the Spider dataset
|
6 |
spider_dataset = load_dataset("spider", split='train') # Load a subset of the dataset
|
7 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
# Load tokenizer and model
|
9 |
tokenizer = AutoTokenizer.from_pretrained("mrm8488/t5-base-finetuned-wikiSQL")
|
10 |
model = AutoModelForSeq2SeqLM.from_pretrained("mrm8488/t5-base-finetuned-wikiSQL")
|
11 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
def generate_sql_from_user_input(query):
|
13 |
# Generate SQL for the user's query
|
14 |
input_text = "translate English to SQL: " + query
|
15 |
inputs = tokenizer(input_text, return_tensors="pt", padding=True)
|
16 |
outputs = model.generate(**inputs, max_length=512)
|
17 |
sql_query = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
|
|
|
|
|
|
18 |
return sql_query
|
19 |
|
20 |
+
def find_matching_sql(nl_query):
|
21 |
+
# Find the matching SQL query from the Spider dataset
|
22 |
+
for item in spider_dataset:
|
23 |
+
if item['question'].lower() == nl_query.lower():
|
24 |
+
return item['query']
|
25 |
+
return "No matching SQL query found in the Spider dataset."
|
26 |
+
|
27 |
# Create a Gradio interface
|
28 |
interface = gr.Interface(
|
29 |
+
fn=lambda query: {
|
30 |
+
"Generated SQL Query": generate_sql_from_user_input(query),
|
31 |
+
"Matching SQL Query from Spider Dataset": find_matching_sql(query)
|
32 |
+
},
|
33 |
inputs=gr.Textbox(label="Enter your natural language query"),
|
34 |
+
outputs=[gr.Textbox(label="Generated SQL Query"), gr.Textbox(label="Matching SQL Query from Spider Dataset")],
|
35 |
title="NL to SQL with T5 using Spider Dataset",
|
36 |
+
description="This model generates an SQL query for your natural language input and finds a matching SQL query from the Spider dataset."
|
37 |
)
|
38 |
|
39 |
# Launch the app
|