File size: 5,260 Bytes
b9ec522
 
 
 
 
 
 
 
43606a3
f58e466
d13f9cf
b5ae065
 
 
b17a5c8
d13f9cf
20a343f
 
11983d2
 
c087a6b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b5ae065
c087a6b
 
 
b07f0b1
c087a6b
 
b5ae065
 
 
01b06a3
c087a6b
 
241ba68
4a66e10
b17a5c8
c087a6b
d13f9cf
20a343f
c087a6b
 
 
 
 
 
 
 
 
 
 
 
b5ae065
 
 
 
 
 
 
b9ec522
b5ae065
 
 
 
 
 
 
 
 
 
 
b07f0b1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b5ae065
 
 
 
 
 
 
 
 
 
 
 
01b06a3
c202241
 
 
 
 
 
 
 
 
 
20a343f
c202241
 
 
 
 
 
 
c087a6b
d885316
b5ae065
c087a6b
b5ae065
20a343f
b5ae065
 
 
c087a6b
 
4a66e10
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
import {
	HF_TOKEN,
	HF_API_ROOT,
	MODELS,
	OLD_MODELS,
	TASK_MODEL,
	HF_ACCESS_TOKEN,
} from "$env/static/private";
import type { ChatTemplateInput } from "$lib/types/Template";
import { compileTemplate } from "$lib/utils/template";
import { z } from "zod";
import endpoints, { endpointSchema, type Endpoint } from "./endpoints/endpoints";
import endpointTgi from "./endpoints/tgi/endpointTgi";
import { sum } from "$lib/utils/sum";
import { embeddingModels, validateEmbeddingModelByName } from "./embeddingModels";

import JSON5 from "json5";

type Optional<T, K extends keyof T> = Pick<Partial<T>, K> & Omit<T, K>;

const modelConfig = z.object({
	/** Used as an identifier in DB */
	id: z.string().optional(),
	/** Used to link to the model page, and for inference */
	name: z.string().min(1),
	displayName: z.string().min(1).optional(),
	description: z.string().min(1).optional(),
	websiteUrl: z.string().url().optional(),
	modelUrl: z.string().url().optional(),
	datasetName: z.string().min(1).optional(),
	datasetUrl: z.string().url().optional(),
	userMessageToken: z.string().default(""),
	userMessageEndToken: z.string().default(""),
	assistantMessageToken: z.string().default(""),
	assistantMessageEndToken: z.string().default(""),
	messageEndToken: z.string().default(""),
	preprompt: z.string().default(""),
	prepromptUrl: z.string().url().optional(),
	chatPromptTemplate: z
		.string()
		.default(
			"{{preprompt}}" +
				"{{#each messages}}" +
				"{{#ifUser}}{{@root.userMessageToken}}{{content}}{{@root.userMessageEndToken}}{{/ifUser}}" +
				"{{#ifAssistant}}{{@root.assistantMessageToken}}{{content}}{{@root.assistantMessageEndToken}}{{/ifAssistant}}" +
				"{{/each}}" +
				"{{assistantMessageToken}}"
		),
	promptExamples: z
		.array(
			z.object({
				title: z.string().min(1),
				prompt: z.string().min(1),
			})
		)
		.optional(),
	endpoints: z.array(endpointSchema).optional(),
	parameters: z
		.object({
			temperature: z.number().min(0).max(1),
			truncate: z.number().int().positive().optional(),
			max_new_tokens: z.number().int().positive(),
			stop: z.array(z.string()).optional(),
			top_p: z.number().positive().optional(),
			top_k: z.number().positive().optional(),
			repetition_penalty: z.number().min(-2).max(2).optional(),
		})
		.passthrough()
		.optional(),
	multimodal: z.boolean().default(false),
	unlisted: z.boolean().default(false),
	embeddingModel: validateEmbeddingModelByName(embeddingModels).optional(),
});

const modelsRaw = z.array(modelConfig).parse(JSON5.parse(MODELS));

const processModel = async (m: z.infer<typeof modelConfig>) => ({
	...m,
	userMessageEndToken: m?.userMessageEndToken || m?.messageEndToken,
	assistantMessageEndToken: m?.assistantMessageEndToken || m?.messageEndToken,
	chatPromptRender: compileTemplate<ChatTemplateInput>(m.chatPromptTemplate, m),
	id: m.id || m.name,
	displayName: m.displayName || m.name,
	preprompt: m.prepromptUrl ? await fetch(m.prepromptUrl).then((r) => r.text()) : m.preprompt,
	parameters: { ...m.parameters, stop_sequences: m.parameters?.stop },
});

const addEndpoint = (m: Awaited<ReturnType<typeof processModel>>) => ({
	...m,
	getEndpoint: async (): Promise<Endpoint> => {
		if (!m.endpoints) {
			return endpointTgi({
				type: "tgi",
				url: `${HF_API_ROOT}/${m.name}`,
				accessToken: HF_TOKEN ?? HF_ACCESS_TOKEN,
				weight: 1,
				model: m,
			});
		}
		const totalWeight = sum(m.endpoints.map((e) => e.weight));

		let random = Math.random() * totalWeight;

		for (const endpoint of m.endpoints) {
			if (random < endpoint.weight) {
				const args = { ...endpoint, model: m };

				switch (args.type) {
					case "tgi":
						return endpoints.tgi(args);
					case "aws":
						return await endpoints.aws(args);
					case "openai":
						return await endpoints.openai(args);
					case "llamacpp":
						return endpoints.llamacpp(args);
					case "ollama":
						return endpoints.ollama(args);
					default:
						// for legacy reason
						return endpoints.tgi(args);
				}
			}
			random -= endpoint.weight;
		}

		throw new Error(`Failed to select endpoint`);
	},
});

export const models = await Promise.all(modelsRaw.map((e) => processModel(e).then(addEndpoint)));

export const defaultModel = models[0];

// Models that have been deprecated
export const oldModels = OLD_MODELS
	? z
			.array(
				z.object({
					id: z.string().optional(),
					name: z.string().min(1),
					displayName: z.string().min(1).optional(),
				})
			)
			.parse(JSON5.parse(OLD_MODELS))
			.map((m) => ({ ...m, id: m.id || m.name, displayName: m.displayName || m.name }))
	: [];

export const validateModel = (_models: BackendModel[]) => {
	// Zod enum function requires 2 parameters
	return z.enum([_models[0].id, ..._models.slice(1).map((m) => m.id)]);
};

// if `TASK_MODEL` is string & name of a model in `MODELS`, then we use `MODELS[TASK_MODEL]`, else we try to parse `TASK_MODEL` as a model config itself

export const smallModel = TASK_MODEL
	? (models.find((m) => m.name === TASK_MODEL) ||
			(await processModel(modelConfig.parse(JSON5.parse(TASK_MODEL))).then((m) =>
				addEndpoint(m)
			))) ??
	  defaultModel
	: defaultModel;

export type BackendModel = Optional<
	typeof defaultModel,
	"preprompt" | "parameters" | "multimodal" | "unlisted"
>;