Spaces:
Sleeping
Sleeping
File size: 10,302 Bytes
a8a9533 43606a3 f58e466 d13f9cf b5ae065 5b1a9aa b5ae065 b17a5c8 d13f9cf a0ed974 144112e 20a343f 144112e 486ffa7 0c3e3b2 20a343f 11983d2 c087a6b 305114d c087a6b b1253fd c087a6b ff934bb c087a6b 7451c63 c087a6b b5ae065 c087a6b ebe2ba8 b07f0b1 ebe2ba8 c087a6b b5ae065 01b06a3 c087a6b 241ba68 564e576 4a66e10 b17a5c8 c087a6b d13f9cf a8a9533 c087a6b 144112e 7451c63 144112e 486ffa7 dc98038 144112e ca2ac64 144112e c03be55 144112e 0c3e3b2 144112e 0c3e3b2 144112e 564e576 d947276 564e576 d947276 564e576 d947276 564e576 0c3e3b2 144112e c03be55 564e576 0c3e3b2 564e576 144112e c087a6b 144112e c087a6b 564e576 b5ae065 a8a9533 b5ae065 b07f0b1 58c3781 61e5613 bf78ac3 b07f0b1 d5625b9 1c84463 987575f 70cdf7a f1cd31d b07f0b1 b5ae065 564e576 b5ae065 371a45e 388034d 371a45e b5ae065 01b06a3 c202241 a8a9533 c202241 371a45e c202241 a8a9533 c202241 c087a6b d885316 b5ae065 a8a9533 b5ae065 c087a6b 4a66e10 564e576 4a66e10 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 |
import { env } from "$env/dynamic/private";
import type { ChatTemplateInput } from "$lib/types/Template";
import { compileTemplate } from "$lib/utils/template";
import { z } from "zod";
import endpoints, { endpointSchema, type Endpoint } from "./endpoints/endpoints";
import { endpointTgi } from "./endpoints/tgi/endpointTgi";
import { sum } from "$lib/utils/sum";
import { embeddingModels, validateEmbeddingModelByName } from "./embeddingModels";
import type { PreTrainedTokenizer } from "@huggingface/transformers";
import JSON5 from "json5";
import { getTokenizer } from "$lib/utils/getTokenizer";
import { logger } from "$lib/server/logger";
import { ToolResultStatus, type ToolInput } from "$lib/types/Tool";
type Optional<T, K extends keyof T> = Pick<Partial<T>, K> & Omit<T, K>;
const modelConfig = z.object({
/** Used as an identifier in DB */
id: z.string().optional(),
/** Used to link to the model page, and for inference */
name: z.string().default(""),
displayName: z.string().min(1).optional(),
description: z.string().min(1).optional(),
logoUrl: z.string().url().optional(),
websiteUrl: z.string().url().optional(),
modelUrl: z.string().url().optional(),
tokenizer: z
.union([
z.string(),
z.object({
tokenizerUrl: z.string().url(),
tokenizerConfigUrl: z.string().url(),
}),
])
.optional(),
datasetName: z.string().min(1).optional(),
datasetUrl: z.string().url().optional(),
preprompt: z.string().default(""),
prepromptUrl: z.string().url().optional(),
chatPromptTemplate: z.string().optional(),
promptExamples: z
.array(
z.object({
title: z.string().min(1),
prompt: z.string().min(1),
})
)
.optional(),
endpoints: z.array(endpointSchema).optional(),
parameters: z
.object({
temperature: z.number().min(0).max(1).optional(),
truncate: z.number().int().positive().optional(),
max_new_tokens: z.number().int().positive().optional(),
stop: z.array(z.string()).optional(),
top_p: z.number().positive().optional(),
top_k: z.number().positive().optional(),
repetition_penalty: z.number().min(-2).max(2).optional(),
})
.passthrough()
.optional(),
multimodal: z.boolean().default(false),
tools: z.boolean().default(false),
unlisted: z.boolean().default(false),
embeddingModel: validateEmbeddingModelByName(embeddingModels).optional(),
});
const modelsRaw = z.array(modelConfig).parse(JSON5.parse(env.MODELS));
async function getChatPromptRender(
m: z.infer<typeof modelConfig>
): Promise<ReturnType<typeof compileTemplate<ChatTemplateInput>>> {
if (m.chatPromptTemplate) {
return compileTemplate<ChatTemplateInput>(m.chatPromptTemplate, m);
}
let tokenizer: PreTrainedTokenizer;
if (!m.tokenizer) {
return compileTemplate<ChatTemplateInput>(
"{{#if @root.preprompt}}<|im_start|>system\n{{@root.preprompt}}<|im_end|>\n{{/if}}{{#each messages}}{{#ifUser}}<|im_start|>user\n{{content}}<|im_end|>\n<|im_start|>assistant\n{{/ifUser}}{{#ifAssistant}}{{content}}<|im_end|>\n{{/ifAssistant}}{{/each}}",
m
);
}
try {
tokenizer = await getTokenizer(m.tokenizer);
} catch (e) {
logger.error(
e,
`Failed to load tokenizer for model ${m.name} consider setting chatPromptTemplate manually or making sure the model is available on the hub.`
);
process.exit();
}
const renderTemplate = ({
messages,
preprompt,
tools,
toolResults,
continueMessage,
}: ChatTemplateInput) => {
let formattedMessages: { role: string; content: string }[] = messages.map((message) => ({
content: message.content,
role: message.from,
}));
if (preprompt && formattedMessages[0].role !== "system") {
formattedMessages = [
{
role: "system",
content: preprompt,
},
...formattedMessages,
];
}
if (toolResults?.length) {
// todo: should update the command r+ tokenizer to support system messages at any location
// or use the `rag` mode without the citations
const id = m.id ?? m.name;
if (id.startsWith("CohereForAI")) {
formattedMessages = [
{
role: "system",
content:
"\n\n<results>\n" +
toolResults
.flatMap((result, idx) => {
if (result.status === ToolResultStatus.Error) {
return (
`Document: ${idx}\n` + `Tool "${result.call.name}" error\n` + result.message
);
}
return (
`Document: ${idx}\n` +
result.outputs
.flatMap((output) =>
Object.entries(output).map(([title, text]) => `${title}\n${text}`)
)
.join("\n")
);
})
.join("\n\n") +
"\n</results>",
},
...formattedMessages,
];
} else if (id.startsWith("meta-llama")) {
const results = toolResults.flatMap((result) => {
if (result.status === ToolResultStatus.Error) {
return [
{
tool_call_id: result.call.name,
output: "Error: " + result.message,
},
];
} else {
return result.outputs.map((output) => ({
tool_call_id: result.call.name,
output: JSON.stringify(output),
}));
}
});
formattedMessages = [
...formattedMessages,
{
role: "python",
content: JSON.stringify(results),
},
];
} else {
formattedMessages = [
...formattedMessages,
{
role: "system",
content: JSON.stringify(toolResults),
},
];
}
tools = [];
}
const chatTemplate = tools?.length ? "tool_use" : undefined;
const documents = (toolResults ?? []).flatMap((result) => {
if (result.status === ToolResultStatus.Error) {
return [{ title: `Tool "${result.call.name}" error`, text: "\n" + result.message }];
}
return result.outputs.flatMap((output) =>
Object.entries(output).map(([title, text]) => ({
title: `Tool "${result.call.name}" ${title}`,
text: "\n" + text,
}))
);
});
const mappedTools =
tools?.map((tool) => {
const inputs: Record<
string,
{
type: ToolInput["type"];
description: string;
required: boolean;
}
> = {};
for (const value of tool.inputs) {
if (value.paramType !== "fixed") {
inputs[value.name] = {
type: value.type,
description: value.description ?? "",
required: value.paramType === "required",
};
}
}
return {
name: tool.name,
description: tool.description,
parameter_definitions: inputs,
};
}) ?? [];
const output = tokenizer.apply_chat_template(formattedMessages, {
tokenize: false,
add_generation_prompt: !continueMessage,
chat_template: chatTemplate,
tools: mappedTools,
documents,
});
if (typeof output !== "string") {
throw new Error("Failed to apply chat template, the output is not a string");
}
return output;
};
return renderTemplate;
}
const processModel = async (m: z.infer<typeof modelConfig>) => ({
...m,
chatPromptRender: await getChatPromptRender(m),
id: m.id || m.name,
displayName: m.displayName || m.name,
preprompt: m.prepromptUrl ? await fetch(m.prepromptUrl).then((r) => r.text()) : m.preprompt,
parameters: { ...m.parameters, stop_sequences: m.parameters?.stop },
});
export type ProcessedModel = Awaited<ReturnType<typeof processModel>> & {
getEndpoint: () => Promise<Endpoint>;
};
const addEndpoint = (m: Awaited<ReturnType<typeof processModel>>) => ({
...m,
getEndpoint: async (): Promise<Endpoint> => {
if (!m.endpoints) {
return endpointTgi({
type: "tgi",
url: `${env.HF_API_ROOT}/${m.name}`,
accessToken: env.HF_TOKEN ?? env.HF_ACCESS_TOKEN,
weight: 1,
model: m,
});
}
const totalWeight = sum(m.endpoints.map((e) => e.weight));
let random = Math.random() * totalWeight;
for (const endpoint of m.endpoints) {
if (random < endpoint.weight) {
const args = { ...endpoint, model: m };
switch (args.type) {
case "tgi":
return endpoints.tgi(args);
case "anthropic":
return endpoints.anthropic(args);
case "anthropic-vertex":
return endpoints.anthropicvertex(args);
case "bedrock":
return endpoints.bedrock(args);
case "aws":
return await endpoints.aws(args);
case "openai":
return await endpoints.openai(args);
case "llamacpp":
return endpoints.llamacpp(args);
case "ollama":
return endpoints.ollama(args);
case "vertex":
return await endpoints.vertex(args);
case "genai":
return await endpoints.genai(args);
case "cloudflare":
return await endpoints.cloudflare(args);
case "cohere":
return await endpoints.cohere(args);
case "langserve":
return await endpoints.langserve(args);
default:
// for legacy reason
return endpoints.tgi(args);
}
}
random -= endpoint.weight;
}
throw new Error(`Failed to select endpoint`);
},
});
export const models: ProcessedModel[] = await Promise.all(
modelsRaw.map((e) => processModel(e).then(addEndpoint))
);
// super ugly but not sure how to make typescript happier
export const validModelIdSchema = z.enum(models.map((m) => m.id) as [string, ...string[]]);
export const defaultModel = models[0];
// Models that have been deprecated
export const oldModels = env.OLD_MODELS
? z
.array(
z.object({
id: z.string().optional(),
name: z.string().min(1),
displayName: z.string().min(1).optional(),
transferTo: validModelIdSchema.optional(),
})
)
.parse(JSON5.parse(env.OLD_MODELS))
.map((m) => ({ ...m, id: m.id || m.name, displayName: m.displayName || m.name }))
: [];
export const validateModel = (_models: BackendModel[]) => {
// Zod enum function requires 2 parameters
return z.enum([_models[0].id, ..._models.slice(1).map((m) => m.id)]);
};
// if `TASK_MODEL` is string & name of a model in `MODELS`, then we use `MODELS[TASK_MODEL]`, else we try to parse `TASK_MODEL` as a model config itself
export const smallModel = env.TASK_MODEL
? (models.find((m) => m.name === env.TASK_MODEL) ||
(await processModel(modelConfig.parse(JSON5.parse(env.TASK_MODEL))).then((m) =>
addEndpoint(m)
))) ??
defaultModel
: defaultModel;
export type BackendModel = Optional<
typeof defaultModel,
"preprompt" | "parameters" | "multimodal" | "unlisted" | "tools"
>;
|