import streamlit as st import requests from bs4 import BeautifulSoup from transformers import pipeline # Set up MBTI classifier classifier = pipeline("text-classification", model="pandalla/MBTIGPT_en_ENTP") def scrape_mbti_lounge(mbti_type): url = f"https://mbtilounge.com/mbti/{mbti_type}" response = requests.get(url) soup = BeautifulSoup(response.text, 'html.parser') # Extract relevant information (adjust selectors as needed) description = soup.find('div', class_='type-description').text return description st.title("MBTI Lookup and Classification") user_input = st.text_area("Enter text to classify MBTI type:") if user_input: # Classify MBTI type result = classifier(user_input)[0] predicted_type = result['label'] confidence = result['score'] st.write(f"Predicted MBTI Type: {predicted_type}") st.write(f"Confidence: {confidence:.2f}") # Fetch MBTI type description from MBTI Lounge description = scrape_mbti_lounge(predicted_type) st.subheader(f"Description for {predicted_type}:") st.write(description)