mbtilounge / app.py
chito365's picture
Update app.py
4b23681 verified
import streamlit as st
import requests
from bs4 import BeautifulSoup
from transformers import pipeline
# Set up MBTI classifier
classifier = pipeline("text-classification", model="pandalla/MBTIGPT_en_ENTP")
def scrape_mbti_lounge(mbti_type):
url = f"https://mbtilounge.com/mbti/{mbti_type}"
response = requests.get(url)
soup = BeautifulSoup(response.text, 'html.parser')
# Extract relevant information (adjust selectors as needed)
description = soup.find('div', class_='type-description').text
return description
st.title("MBTI Lookup and Classification")
user_input = st.text_area("Enter text to classify MBTI type:")
if user_input:
# Classify MBTI type
result = classifier(user_input)[0]
predicted_type = result['label']
confidence = result['score']
st.write(f"Predicted MBTI Type: {predicted_type}")
st.write(f"Confidence: {confidence:.2f}")
# Fetch MBTI type description from MBTI Lounge
description = scrape_mbti_lounge(predicted_type)
st.subheader(f"Description for {predicted_type}:")
st.write(description)