LiveCC / app.py
chenjoya's picture
Update app.py
05778f8 verified
hf_spaces = True
js_monitor = False # if False, will not care about the actual video timestamp in front end. Suitable for enviroment with unsolvable latency (e.g. hf spaces)
if hf_spaces:
try:
import spaces
except Exception as e:
print(e)
import os
import numpy as np
import gradio as gr
from demo.infer import LiveCCDemoInfer
class GradioBackend:
waiting_video_response = 'Waiting for video input...'
not_found_video_response = 'Video does not exist...'
mode2api = {
'Real-Time Commentary': 'live_cc',
'Conversation': 'video_qa'
}
def __init__(self, model_path: str = 'chenjoya/LiveCC-7B-Instruct'):
self.infer = LiveCCDemoInfer(model_path)
def __call__(self, message: str = None, history: list[str] = None, state: dict = {}, mode: str = 'Real-Time Commentary', **kwargs):
return getattr(self.infer, self.mode2api[mode])(message=message, history=history, state=state, **kwargs)
gradio_backend = None if hf_spaces else GradioBackend()
with gr.Blocks() as demo:
gr.Markdown("## LiveCC Conversation and Real-Time Commentary - Gradio Demo")
gr.Markdown("### [LiveCC: Learning Video LLM with Streaming Speech Transcription at Scale (CVPR 2025)](https://showlab.github.io/livecc/)")
gr.Markdown("1️⃣ Select Mode, Real-Time Commentary (LiveCC) or Conversation (Common QA/Multi-turn)")
gr.Markdown("2️⃣🅰️ **Real-Time Commentary: Input a query (optional) -> Click or upload a video**.")
gr.Markdown("2️⃣🅱️ **Conversation: Click or upload a video -> Input a query**. But as the past_key_values support in ZeroGPU is not good, multi-turn conversation could be slower.")
gr.Markdown("*HF Space Gradio has unsolvable latency (10s~20s), and not support flash-attn. If you want to enjoy the very real-time experience, please deploy locally https://github.com/showlab/livecc*")
gr_state = gr.State({}, render=False) # control all useful state, including kv cache
gr_video_state = gr.JSON({}, visible=False) # only record video state, belong to gr_state but lightweight
gr_static_trigger = gr.Number(value=0, visible=False) # control start streaming or stop
gr_dynamic_trigger = gr.Number(value=0, visible=False) # for continuous refresh
with gr.Row():
with gr.Column():
gr_video = gr.Video(
label="video",
elem_id="gr_video",
visible=True,
sources=['upload'],
autoplay=True,
width=720,
height=480
)
gr_examples = gr.Examples(
examples=[
'demo/sources/howto_fix_laptop_mute_1080p.mp4',
'demo/sources/writing_mute_1080p.mp4',
'demo/sources/spacex_falcon9_mute_1080p.mp4',
'demo/sources/warriors_vs_rockets_2025wcr1_mute_1080p.mp4',
'demo/sources/dota2_facelessvoid_mute_1080p.mp4'
],
inputs=[gr_video],
)
gr_clean_button = gr.Button("Clean (Press me before changing video)", elem_id="gr_button")
with gr.Column():
with gr.Row():
gr_radio_mode = gr.Radio(label="Select Mode", choices=["Real-Time Commentary", "Conversation"], elem_id="gr_radio_mode", value='Real-Time Commentary', interactive=True)
@spaces.GPU
def gr_chatinterface_fn(message, history, state, video_path, mode):
if mode != 'Conversation':
yield 'waiting for video input...', state
return
global gradio_backend
if gradio_backend is None:
yield '(ZeroGPU needs to initialize model under @spaces.GPU, thanks for waiting...)', state
gradio_backend = GradioBackend()
yield '(finished initialization, responding...)', state
state['video_path'] = video_path
response, state = gradio_backend(message=message, history=history, state=state, mode=mode, hf_spaces=hf_spaces)
yield response, state
def gr_chatinterface_chatbot_clear_fn(gr_dynamic_trigger):
return {}, {}, 0, gr_dynamic_trigger
gr_chatinterface = gr.ChatInterface(
fn=gr_chatinterface_fn,
type="messages",
additional_inputs=[gr_state, gr_video, gr_radio_mode],
additional_outputs=[gr_state]
)
gr_chatinterface.chatbot.clear(fn=gr_chatinterface_chatbot_clear_fn, inputs=[gr_dynamic_trigger], outputs=[gr_video_state, gr_state, gr_static_trigger, gr_dynamic_trigger])
gr_clean_button.click(fn=lambda :[[], *gr_chatinterface_chatbot_clear_fn()], inputs=[gr_dynamic_trigger], outputs=[gr_video_state, gr_state, gr_static_trigger, gr_dynamic_trigger])
@spaces.GPU
def gr_for_streaming(history: list[gr.ChatMessage], video_state: dict, state: dict, mode: str, static_trigger: int, dynamic_trigger: int):
if static_trigger == 0:
yield [], {}, dynamic_trigger
return
global gradio_backend
if gradio_backend is None:
yield history + [gr.ChatMessage(role="assistant", content='(ZeroGPU needs to initialize model under @spaces.GPU, thanks for waiting...)')] , state, dynamic_trigger
gradio_backend = GradioBackend()
yield history + [gr.ChatMessage(role="assistant", content='(Loading video now... thanks for waiting...)')], state, dynamic_trigger
if not js_monitor:
video_state['video_timestamp'] = 19260817 # 👓
state.update(video_state)
query, assistant_waiting_message = None, None
for message in history[::-1]:
if message['role'] == 'user':
if message['metadata'] is None or message['metadata'].get('status', '') == '':
query = message['content']
if message['metadata'] is None:
message['metadata'] = {}
message['metadata']['status'] = 'pending'
continue
if query is not None: # put others as done
message['metadata']['status'] = 'done'
elif message['content'] == '(Loading video now... thanks for waiting...)':
assistant_waiting_message = message
for (start_timestamp, stop_timestamp), response, state in gradio_backend(message=query, state=state, mode=mode, hf_spaces=hf_spaces):
if start_timestamp >= 0:
response_with_timestamp = f'{start_timestamp:.1f}s-{stop_timestamp:.1f}s: {response}'
if assistant_waiting_message is None:
history.append(gr.ChatMessage(role="assistant", content=response_with_timestamp))
else:
assistant_waiting_message['content'] = response_with_timestamp
assistant_waiting_message = None
yield history, state, dynamic_trigger
if js_monitor:
yield history, state, 1 - dynamic_trigger
else:
yield history, state, dynamic_trigger
js_video_timestamp_fetcher = """
(state, video_state) => {
const videoEl = document.querySelector("#gr_video video");
return { video_path: videoEl.currentSrc, video_timestamp: videoEl.currentTime };
}
"""
def gr_get_video_state(video_state):
if 'file=' in video_state['video_path']:
video_state['video_path'] = video_state['video_path'].split('file=')[1]
return video_state
def gr_video_change_fn(mode):
return [1, 1] if mode == "Real-Time Commentary" else [0, 0]
gr_video.change(
fn=gr_video_change_fn,
inputs=[gr_radio_mode],
outputs=[gr_static_trigger, gr_dynamic_trigger]
)
gr_dynamic_trigger.change(
fn=gr_get_video_state,
inputs=[gr_video_state],
outputs=[gr_video_state],
js=js_video_timestamp_fetcher
).then(
fn=gr_for_streaming,
inputs=[gr_chatinterface.chatbot, gr_video_state, gr_state, gr_radio_mode, gr_static_trigger, gr_dynamic_trigger],
outputs=[gr_chatinterface.chatbot, gr_state, gr_dynamic_trigger],
)
demo.queue(max_size=5, default_concurrency_limit=5)
demo.launch(share=True)