Spaces:
Running
on
Zero
Running
on
Zero
hf_spaces = True | |
js_monitor = False # if False, will not care about the actual video timestamp in front end. Suitable for enviroment with unsolvable latency (e.g. hf spaces) | |
if hf_spaces: | |
try: | |
import spaces | |
except Exception as e: | |
print(e) | |
import os | |
import numpy as np | |
import gradio as gr | |
from demo.infer import LiveCCDemoInfer | |
class GradioBackend: | |
waiting_video_response = 'Waiting for video input...' | |
not_found_video_response = 'Video does not exist...' | |
mode2api = { | |
'Real-Time Commentary': 'live_cc', | |
'Conversation': 'video_qa' | |
} | |
def __init__(self, model_path: str = 'chenjoya/LiveCC-7B-Instruct'): | |
self.infer = LiveCCDemoInfer(model_path) | |
def __call__(self, message: str = None, history: list[str] = None, state: dict = {}, mode: str = 'Real-Time Commentary', **kwargs): | |
return getattr(self.infer, self.mode2api[mode])(message=message, history=history, state=state, **kwargs) | |
gradio_backend = None if hf_spaces else GradioBackend() | |
with gr.Blocks() as demo: | |
gr.Markdown("## LiveCC Conversation and Real-Time Commentary - Gradio Demo") | |
gr.Markdown("### [LiveCC: Learning Video LLM with Streaming Speech Transcription at Scale (CVPR 2025)](https://showlab.github.io/livecc/)") | |
gr.Markdown("1️⃣ Select Mode, Real-Time Commentary (LiveCC) or Conversation (Common QA/Multi-turn)") | |
gr.Markdown("2️⃣🅰️ **Real-Time Commentary: Input a query (optional) -> Click or upload a video**.") | |
gr.Markdown("2️⃣🅱️ **Conversation: Click or upload a video -> Input a query**. But as the past_key_values support in ZeroGPU is not good, multi-turn conversation could be slower.") | |
gr.Markdown("*HF Space Gradio has unsolvable latency (10s~20s), and not support flash-attn. If you want to enjoy the very real-time experience, please deploy locally https://github.com/showlab/livecc*") | |
gr_state = gr.State({}, render=False) # control all useful state, including kv cache | |
gr_video_state = gr.JSON({}, visible=False) # only record video state, belong to gr_state but lightweight | |
gr_static_trigger = gr.Number(value=0, visible=False) # control start streaming or stop | |
gr_dynamic_trigger = gr.Number(value=0, visible=False) # for continuous refresh | |
with gr.Row(): | |
with gr.Column(): | |
gr_video = gr.Video( | |
label="video", | |
elem_id="gr_video", | |
visible=True, | |
sources=['upload'], | |
autoplay=True, | |
width=720, | |
height=480 | |
) | |
gr_examples = gr.Examples( | |
examples=[ | |
'demo/sources/howto_fix_laptop_mute_1080p.mp4', | |
'demo/sources/writing_mute_1080p.mp4', | |
'demo/sources/spacex_falcon9_mute_1080p.mp4', | |
'demo/sources/warriors_vs_rockets_2025wcr1_mute_1080p.mp4', | |
'demo/sources/dota2_facelessvoid_mute_1080p.mp4' | |
], | |
inputs=[gr_video], | |
) | |
gr_clean_button = gr.Button("Clean (Press me before changing video)", elem_id="gr_button") | |
with gr.Column(): | |
with gr.Row(): | |
gr_radio_mode = gr.Radio(label="Select Mode", choices=["Real-Time Commentary", "Conversation"], elem_id="gr_radio_mode", value='Real-Time Commentary', interactive=True) | |
def gr_chatinterface_fn(message, history, state, video_path, mode): | |
if mode != 'Conversation': | |
yield 'waiting for video input...', state | |
return | |
global gradio_backend | |
if gradio_backend is None: | |
yield '(ZeroGPU needs to initialize model under @spaces.GPU, thanks for waiting...)', state | |
gradio_backend = GradioBackend() | |
yield '(finished initialization, responding...)', state | |
state['video_path'] = video_path | |
response, state = gradio_backend(message=message, history=history, state=state, mode=mode, hf_spaces=hf_spaces) | |
yield response, state | |
def gr_chatinterface_chatbot_clear_fn(gr_dynamic_trigger): | |
return {}, {}, 0, gr_dynamic_trigger | |
gr_chatinterface = gr.ChatInterface( | |
fn=gr_chatinterface_fn, | |
type="messages", | |
additional_inputs=[gr_state, gr_video, gr_radio_mode], | |
additional_outputs=[gr_state] | |
) | |
gr_chatinterface.chatbot.clear(fn=gr_chatinterface_chatbot_clear_fn, inputs=[gr_dynamic_trigger], outputs=[gr_video_state, gr_state, gr_static_trigger, gr_dynamic_trigger]) | |
gr_clean_button.click(fn=lambda :[[], *gr_chatinterface_chatbot_clear_fn()], inputs=[gr_dynamic_trigger], outputs=[gr_video_state, gr_state, gr_static_trigger, gr_dynamic_trigger]) | |
def gr_for_streaming(history: list[gr.ChatMessage], video_state: dict, state: dict, mode: str, static_trigger: int, dynamic_trigger: int): | |
if static_trigger == 0: | |
yield [], {}, dynamic_trigger | |
return | |
global gradio_backend | |
if gradio_backend is None: | |
yield history + [gr.ChatMessage(role="assistant", content='(ZeroGPU needs to initialize model under @spaces.GPU, thanks for waiting...)')] , state, dynamic_trigger | |
gradio_backend = GradioBackend() | |
yield history + [gr.ChatMessage(role="assistant", content='(Loading video now... thanks for waiting...)')], state, dynamic_trigger | |
if not js_monitor: | |
video_state['video_timestamp'] = 19260817 # 👓 | |
state.update(video_state) | |
query, assistant_waiting_message = None, None | |
for message in history[::-1]: | |
if message['role'] == 'user': | |
if message['metadata'] is None or message['metadata'].get('status', '') == '': | |
query = message['content'] | |
if message['metadata'] is None: | |
message['metadata'] = {} | |
message['metadata']['status'] = 'pending' | |
continue | |
if query is not None: # put others as done | |
message['metadata']['status'] = 'done' | |
elif message['content'] == '(Loading video now... thanks for waiting...)': | |
assistant_waiting_message = message | |
for (start_timestamp, stop_timestamp), response, state in gradio_backend(message=query, state=state, mode=mode, hf_spaces=hf_spaces): | |
if start_timestamp >= 0: | |
response_with_timestamp = f'{start_timestamp:.1f}s-{stop_timestamp:.1f}s: {response}' | |
if assistant_waiting_message is None: | |
history.append(gr.ChatMessage(role="assistant", content=response_with_timestamp)) | |
else: | |
assistant_waiting_message['content'] = response_with_timestamp | |
assistant_waiting_message = None | |
yield history, state, dynamic_trigger | |
if js_monitor: | |
yield history, state, 1 - dynamic_trigger | |
else: | |
yield history, state, dynamic_trigger | |
js_video_timestamp_fetcher = """ | |
(state, video_state) => { | |
const videoEl = document.querySelector("#gr_video video"); | |
return { video_path: videoEl.currentSrc, video_timestamp: videoEl.currentTime }; | |
} | |
""" | |
def gr_get_video_state(video_state): | |
if 'file=' in video_state['video_path']: | |
video_state['video_path'] = video_state['video_path'].split('file=')[1] | |
return video_state | |
def gr_video_change_fn(mode): | |
return [1, 1] if mode == "Real-Time Commentary" else [0, 0] | |
gr_video.change( | |
fn=gr_video_change_fn, | |
inputs=[gr_radio_mode], | |
outputs=[gr_static_trigger, gr_dynamic_trigger] | |
) | |
gr_dynamic_trigger.change( | |
fn=gr_get_video_state, | |
inputs=[gr_video_state], | |
outputs=[gr_video_state], | |
js=js_video_timestamp_fetcher | |
).then( | |
fn=gr_for_streaming, | |
inputs=[gr_chatinterface.chatbot, gr_video_state, gr_state, gr_radio_mode, gr_static_trigger, gr_dynamic_trigger], | |
outputs=[gr_chatinterface.chatbot, gr_state, gr_dynamic_trigger], | |
) | |
demo.queue(max_size=5, default_concurrency_limit=5) | |
demo.launch(share=True) |