Spaces:
Configuration error
Configuration error
File size: 14,089 Bytes
ce2b87c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 |
import gradio as gr
import threading
from Config.config import VECTOR_DB,DB_directory
if VECTOR_DB==1:
from embeding.chromadb import ChromaDB as vectorDB
vectordb = vectorDB(persist_directory=DB_directory)
elif VECTOR_DB==2:
from embeding.faissdb import FaissDB as vectorDB
vectordb = vectorDB(persist_directory=DB_directory)
from Ollama_api.ollama_api import *
from rag.rag_class import *
# 存储上传的文件
uploaded_files = []
# 模拟获取最新的知识库文件
def get_knowledge_base_files():
cl_dict = {}
cols = vectordb.get_all_collections_name()
for c_name in cols:
cl_dict[c_name] = vectordb.get_collcetion_content_files(c_name)
return cl_dict
knowledge_base_files = get_knowledge_base_files()
def upload_files(files):
if files:
new_files = [file.name for file in files]
uploaded_files.extend(new_files)
update_knowledge_base_files()
return update_file_list(), new_files, "<div style='color: green; padding: 10px; border: 2px solid green; border-radius: 5px;'>Upload successful!</div>"
update_knowledge_base_files()
return update_file_list(), [], "<div style='color: red; padding: 10px; border: 2px solid red; border-radius: 5px;'>Upload failed!</div>"
def delete_files(selected_files):
global uploaded_files
uploaded_files = [f for f in uploaded_files if f not in selected_files]
if selected_files:
update_knowledge_base_files()
return update_file_list(), "<div style='color: green; padding: 10px; border: 2px solid green; border-radius: 5px;'>Delete successful!</div>"
update_knowledge_base_files()
return update_file_list(), "<div style='color: red; padding: 10px; border: 2px solid red; border-radius: 5px;'>Delete failed!</div>"
def delete_collection(selected_knowledge_base):
if selected_knowledge_base and selected_knowledge_base != "创建知识库":
vectordb.delete_collection(selected_knowledge_base)
update_knowledge_base_files()
return update_knowledge_base_dropdown(), "<div style='color: green; padding: 10px; border: 2px solid green; border-radius: 5px;'>Collection deleted successfully!</div>"
return update_knowledge_base_dropdown(), "<div style='color: red; padding: 10px; border: 2px solid red; border-radius: 5px;'>Delete collection failed!</div>"
def create_graph(selected_files):
from Neo4j.neo4j_op import KnowledgeGraph
from Neo4j.graph_extract import update_graph
from Config.config import neo4j_host, neo4j_name, neo4j_pwd
import tqdm
kg = KnowledgeGraph(neo4j_host,neo4j_name,neo4j_pwd)
data = kg.split_files(selected_files)
for doc in tqdm.tqdm(data):
text = doc.page_content
try:
res = update_graph(text)
# 批量创建节点
nodes = kg.create_nodes("node", res["nodes"])
# 批量创建关系
relationships = kg.create_relationships([
("node", {"name": edge["source"]}, "node", {"name": edge["target"]}, edge["label"]) for edge in res["edges"]
])
except:
print("错误----------------------------------")
def vectorize_files(selected_files, selected_knowledge_base, new_kb_name,choice_graph, chunk_size, chunk_overlap):
if selected_files:
if selected_knowledge_base == "创建知识库":
knowledge_base = new_kb_name
vectordb.create_collection(selected_files, knowledge_base, chunk_size=chunk_size, chunk_overlap=chunk_overlap)
if choice_graph=='是':
create_graph(selected_files)
else:
knowledge_base = selected_knowledge_base
vectordb.add_chroma(selected_files, knowledge_base, chunk_size=chunk_size, chunk_overlap=chunk_overlap)
if choice_graph == '是':
create_graph(selected_files)
if knowledge_base not in knowledge_base_files:
knowledge_base_files[knowledge_base] = []
knowledge_base_files[knowledge_base].extend(selected_files)
return f"Vectorized files: {', '.join(selected_files)}\nKnowledge Base: {knowledge_base}\nUploaded Files: {', '.join(uploaded_files)}", "<div style='color: green; padding: 10px; border: 2px solid green; border-radius: 5px;'>Vectorization successful!</div>"
return "", "<div style='color: red; padding: 10px; border: 2px solid red; border-radius: 5px;'>Vectorization failed!</div>"
def update_file_list():
return gr.update(choices=uploaded_files, value=[])
def search_knowledge_base(selected_knowledge_base):
if selected_knowledge_base in knowledge_base_files:
kb_files = knowledge_base_files[selected_knowledge_base]
return gr.update(choices=kb_files, value=[])
return gr.update(choices=[], value=[])
def update_knowledge_base_files():
global knowledge_base_files
knowledge_base_files = get_knowledge_base_files()
# 处理聊天消息的函数
chat_history = []
def chat_response(model_dropdown, vector_dropdown, chat_knowledge_base_dropdown, chain_dropdown, message):
global chat_history
if message:
chat_history.append(("User", message))
if chat_knowledge_base_dropdown == "仅使用模型":
rag = RAG_class(model=model_dropdown,persist_directory=DB_directory)
answer = rag.mult_chat(chat_history)
if chat_knowledge_base_dropdown and chat_knowledge_base_dropdown != "仅使用模型":
rag = RAG_class(model=model_dropdown, embed=vector_dropdown, c_name=chat_knowledge_base_dropdown, persist_directory=DB_directory)
if chain_dropdown == "复杂召回方式":
questions = rag.decomposition_chain(message)
answer = rag.rag_chain(questions)
elif chain_dropdown == "简单召回方式":
answer = rag.simple_chain(message)
else:
answer = rag.rerank_chain(message)
response = f" {answer}"
chat_history.append(("Bot", response))
return format_chat_history(chat_history), ""
def clear_chat():
global chat_history
chat_history = []
return format_chat_history(chat_history)
def format_chat_history(history):
formatted_history = ""
for user, msg in history:
if user == "User":
formatted_history += f'''
<div style="text-align: right; margin: 10px;">
<div style="display: inline-block; background-color: #DCF8C6; padding: 10px; border-radius: 10px; max-width: 60%;">
{msg}
</div>
<b>:User</b>
</div>
'''
else:
if "```" in msg: # 检测是否包含代码片段
code_content = msg.split("```")[1]
formatted_history += f'''
<div style="text-align: left; margin: 10px;">
<b>Bot:</b>
<div style="display: inline-block; background-color: #F1F0F0; padding: 10px; border-radius: 10px; max-width: 60%;">
<pre><code>{code_content}</code></pre>
</div>
</div>
'''
else:
formatted_history += f'''
<div style="text-align: left; margin: 10px;">
<b>Bot:</b>
<div style="display: inline-block; background-color: #F1F0F0; padding: 10px; border-radius: 10px; max-width: 60%;">
{msg}
</div>
</div>
'''
return formatted_history
def clear_status():
upload_status.update("")
delete_status.update("")
vectorize_status.update("")
delete_collection_status.update("")
def handle_knowledge_base_selection(selected_knowledge_base):
if selected_knowledge_base == "创建知识库":
return gr.update(visible=True, interactive=True), gr.update(choices=[], value=[]), gr.update(visible=False)
elif selected_knowledge_base == "仅使用模型":
return gr.update(visible=False, interactive=False), gr.update(choices=[], value=[]), gr.update(visible=False)
else:
return gr.update(visible=False, interactive=False), search_knowledge_base(selected_knowledge_base), gr.update(visible=True)
def update_knowledge_base_dropdown():
global knowledge_base_files
choices = ["创建知识库"] + list(knowledge_base_files.keys())
return gr.update(choices=choices)
def update_chat_knowledge_base_dropdown():
global knowledge_base_files
choices = ["仅使用模型"] + list(knowledge_base_files.keys())
return gr.update(choices=choices)
# 创建 Gradio 界面
with gr.Blocks() as demo:
with gr.Column():
# 添加标题
title = gr.HTML("<h1 style='text-align: center; font-size: 32px; font-weight: bold;'>RAG精致系统</h1>")
# 添加公告栏
announcement = gr.HTML("<div style='text-align: center; font-size: 18px; color: red;'>公告栏: 欢迎使用RAG精致系统</div>")
with gr.Tabs():
with gr.TabItem("知识库"):
knowledge_base_dropdown = gr.Dropdown(choices=["创建知识库"] + list(knowledge_base_files.keys()),
label="选择知识库")
new_kb_input = gr.Textbox(label="输入新的知识库名称", visible=False, interactive=True)
choice_graph = gr.Radio(choices=["否", "是"], value="否",label="是否同时提取知识图谱(会比较慢)")
file_input = gr.Files(label="Upload files")
upload_btn = gr.Button("Upload")
file_list = gr.CheckboxGroup(label="Uploaded Files")
delete_btn = gr.Button("Delete Selected Files")
with gr.Row():
chunk_size_dropdown = gr.Dropdown(choices=[50, 100, 200, 300, 500, 700], label="chunk_size", value=200)
chunk_overlap_dropdown = gr.Dropdown(choices=[20, 50, 100, 200], label="chunk_overlap", value=50)
vectorize_btn = gr.Button("Vectorize Selected Files")
delete_collection_btn = gr.Button("Delete Collection")
upload_status = gr.HTML()
delete_status = gr.HTML()
vectorize_status = gr.HTML()
delete_collection_status = gr.HTML()
with gr.TabItem("Chat"):
with gr.Row():
model_dropdown = gr.Dropdown(choices=get_llm(), label="模型")
vector_dropdown = gr.Dropdown(choices=get_embeding_model(), label="向量")
chat_knowledge_base_dropdown = gr.Dropdown(choices=["仅使用模型"] + vectordb.get_all_collections_name(), label="知识库")
chain_dropdown = gr.Dropdown(choices=["复杂召回方式", "简单召回方式","rerank"], label="chain方式", visible=False)
chat_display = gr.HTML(label="Chat History")
chat_input = gr.Textbox(label="Type a message")
chat_btn = gr.Button("Send")
clear_btn = gr.Button("Clear Chat History")
def handle_upload(files):
upload_result, new_files, status = upload_files(files)
threading.Thread(target=clear_status).start()
return upload_result, new_files, status, update_chat_knowledge_base_dropdown()
def handle_delete(selected_knowledge_base, selected_files):
tmp = []
cols_files_tmp = vectordb.get_collcetion_content_files(c_name=selected_knowledge_base)
for i in selected_files:
if i in cols_files_tmp:
tmp.append(i)
del cols_files_tmp
if tmp:
vectordb.del_files(tmp, c_name=selected_knowledge_base)
del tmp
delete_result, status = delete_files(selected_files)
threading.Thread(target=clear_status).start()
return delete_result, status, update_chat_knowledge_base_dropdown()
def handle_vectorize(selected_files, selected_knowledge_base, new_kb_name, choice_graph,chunk_size, chunk_overlap):
vectorize_result, status = vectorize_files(selected_files, selected_knowledge_base, new_kb_name, choice_graph,chunk_size, chunk_overlap)
threading.Thread(target=clear_status).start()
return vectorize_result, status, update_knowledge_base_dropdown(), update_chat_knowledge_base_dropdown()
def handle_delete_collection(selected_knowledge_base):
result, status = delete_collection(selected_knowledge_base)
threading.Thread(target=clear_status).start()
return result, status, update_chat_knowledge_base_dropdown()
knowledge_base_dropdown.change(
handle_knowledge_base_selection,
inputs=knowledge_base_dropdown,
outputs=[new_kb_input, file_list, chain_dropdown]
)
upload_btn.click(handle_upload, inputs=file_input, outputs=[file_list, file_list, upload_status, chat_knowledge_base_dropdown])
delete_btn.click(handle_delete, inputs=[knowledge_base_dropdown, file_list], outputs=[file_list, delete_status, chat_knowledge_base_dropdown])
vectorize_btn.click(handle_vectorize, inputs=[file_list, knowledge_base_dropdown, new_kb_input,choice_graph, chunk_size_dropdown, chunk_overlap_dropdown],
outputs=[gr.Textbox(visible=False), vectorize_status, knowledge_base_dropdown, chat_knowledge_base_dropdown])
delete_collection_btn.click(handle_delete_collection, inputs=knowledge_base_dropdown,
outputs=[knowledge_base_dropdown, delete_collection_status, chat_knowledge_base_dropdown])
chat_btn.click(chat_response, inputs=[model_dropdown, vector_dropdown, chat_knowledge_base_dropdown, chain_dropdown, chat_input], outputs=[chat_display, chat_input])
clear_btn.click(clear_chat, outputs=chat_display)
chat_knowledge_base_dropdown.change(
fn=lambda selected: gr.update(visible=selected != "仅使用模型"),
inputs=chat_knowledge_base_dropdown,
outputs=chain_dropdown
)
demo.launch(debug=True,share=True) |