# Copyright 2022 - Intel Corp. All rights reserved. # Authors: Mayank Kumar Raunak, Javier Turek, Nicole Backage import copy import logging import random import joblib import numpy as np import torch import torch.nn as nn from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AdamW, GPT2LMHeadModel, get_linear_schedule_with_warmup logger = logging.getLogger(__name__) def set_seed(seed): """ For reproducible training Args: seed: A seed for reproducible training """ random.seed(seed) np.random.seed(seed) torch.manual_seed(seed) torch.cuda.manual_seed_all(seed) def compute_perplexity(model, test_data, context_len): """ Computes perplexity of the transformer model on data in test_data Args: model: Pre-trained GPT2 model test_data: Data on which perplexity calculation is required context_len: The maximum total input sequence length after tokenization. Sequences longer than this will be truncated, sequences shorter will be padded Returns: Perplexity on input test data """ model.eval() device = next(model.parameters()).device eval_batch_size = 1 context = torch.zeros((eval_batch_size, context_len), dtype=torch.long, device=device) eval_dataloader = DataLoader(test_data, shuffle=False, batch_size=eval_batch_size) eval_loss = torch.zeros(1, device=device) nb_eval_examples = 0 for batch in eval_dataloader: batch.to(device) # pad context.zero_() for i in range(eval_batch_size): context[i, :] = batch[i] outputs = model(context, labels=context) eval_loss += outputs[0].sum().item() nb_eval_examples += batch.size(0) eval_loss = eval_loss / nb_eval_examples perplexity = torch.exp(eval_loss) model.train() return perplexity def load_gpt2(model_name="gpt2"): """ load original gpt2 and save off for quicker loading Args: model_name: GPT-2 Returns: GPT-2 model """ model = GPT2LMHeadModel.from_pretrained(model_name, output_hidden_states=True) torch.save(model.state_dict(), model_name + "local.pt") return model def recopy_gpt2(orig_model, device, max_steps): """ Reset the model to the original pretrained GPT-2 weights after each iteration Args: orig_model: Original pretrained GPT-2 model imported from Transformers library device: CPU/GPU max_steps: number of training steps Returns: Original PreTrained GPT-2 model, lm_optimizer: Adam optimizer with Decoupled weight decay lm_scheduler: linear scheduler with the appropriate schedule """ model = copy.deepcopy(orig_model) model.to(device) no_decay = ["bias", "LayerNorm.weight"] optimizer_grouped_parameters = [ { "params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)], "weight_decay": 0.0, }, {"params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], "weight_decay": 0.0}, ] lm_optimizer = AdamW(optimizer_grouped_parameters, lr=5e-5, eps=1e-8) lm_scheduler = get_linear_schedule_with_warmup(lm_optimizer, 0, max_steps) torch.cuda.empty_cache() return model, lm_optimizer, lm_scheduler def intermittent_save(contexts, real_perps, past_perps, filename): """ save the perplexity differences to filename Args: contexts: Example on which the perplexity is calculated real_perps: Perplexity after back-propagating on the selected context past_perps: Perplexity of model before training on the context filename: File to store perplexity differences Returns: file with perplexity differences """ # save the perplexity differences to filename avg = np.array(real_perps).mean() std = np.array(real_perps).std() perp_diff = (real_perps - avg) / std data_final = list(zip(contexts, perp_diff, past_perps)) joblib.dump(data_final, filename) def collect_objective_set( model, orig_perp, context_len, train_data, objective_set, max_steps, device, filename="dev.jbl", recopy_model=recopy_gpt2, ): """ Collect individual IGF values from pre-trained transformer model max_steps samples of training data to train secondary model Args: model: Pre-trained GPT2 model orig_perp: Perplexity of original pretrained GPT-2 model context_len: The maximum total input sequence length after tokenization. Sequences longer than this will be truncated, sequences shorter will be padded train_data: Data to train model objective_set: Contexts used to create (X,IG(X)) pairs which is the training data for secondary learner max_steps: To calculate training epochs of model device: GPU/CPU filename: To store intermediate perplexity differences recopy_model: Reset the model to the original pretrained GPT-2 weights after each iteration Returns: file stored intermediate perplexity differences in intermediate stages """ # initialize variables to record relevant information contexts = [] real_perps = [] past_perps = [] # Initialize the transformer model orig_model = copy.deepcopy(model) orig_model.to(device="cpu") torch.cuda.empty_cache() # Compute perplexity of initial transformer model for comparison model.train() model, lm_optimizer, lm_scheduler = recopy_model(orig_model, device, max_steps) for step in tqdm(range(max_steps)): context = torch.zeros((1, context_len), dtype=torch.long, device=device) story = random.choice(train_data) start = random.randint(0, len(story[0]) - context_len - 1) context[0, :] = story[0][start : start + context_len] lm_optimizer.zero_grad() outputs = model(context, labels=context) lm_loss = outputs[0] past_perp = compute_perplexity(model, context, context_len) model.train() lm_loss.backward() # Do LM backprop torch.nn.utils.clip_grad_norm_(model.parameters(), 3.0) lm_optimizer.step() lm_scheduler.step() # Update learning rate schedule # Compute perplexity after back-propagating on the selected context real_perp = compute_perplexity(model, objective_set, context_len) # Periodically save the stored (X, IG(X)) pairs if step % 1000 == 0 and step > 1: intermittent_save(contexts, real_perps, past_perps, filename) # Reset the pretrained model to the original pretrained GPT-2 weights after each iteration model, lm_optimizer, lm_scheduler = recopy_model(orig_model, device, max_steps) past_perps.append(past_perp.item()) real_perps.append(orig_perp - real_perp.item()) contexts.append(np.array(context.cpu())) intermittent_save(contexts, real_perps, past_perps, filename) def generate_datasets( context_len, file="data/tokenized_stories_train_wikitext103.jbl", number=100, min_len=1026, trim=True ): """ Generate objective set and training set Args: context_len: The maximum total input sequence length after tokenization. Sequences longer than this will be truncated, sequences shorter will be padded file: Tokenized data split into training set and objective set number: size of objective dataset min_len: minimum length of a context in objective set trim: If True truncate the context if it exceeds context length Returns: Generated objective set and training data """ # Generate objective set and training set # Designate the first number (100) articles that are long enough to be used # as our objective set, rest (that are long enough) are training data for # secondary learner data = joblib.load(file) print("data loaded") objective_set = [] if trim: for i, example in enumerate(data): if len(example[0]) > min_len: start = random.randint(0, len(example[0]) - context_len - 1) objective_set.append(example[0, start : start + context_len]) if len(objective_set) >= number: break train_data = [] for j in range(i + 1, len(data)): if len(data[j][0]) > min_len: train_data.append(data[j]) else: objective_set = data[0:number] train_data = data[number:] joblib.dump(objective_set, "objective_set.jbl") print("objective set saved") return train_data, objective_set def train_secondary_learner( secondary_learner, train_dataset, max_epochs, batch_size, eval_freq=50, igf_model_path="secondary_learner.pt" ): """ Train the secondary learner (igf_model) Args: secondary_learner: secondary learner train_dataset: data to train secondary learner max_epochs: number of epochs to train secondary learner batch_size: batch size of training data of secondary learner eval_freq: secondary model evaluation can be triggered at eval_freq igf_model_path: path to store trained secondary learner Returns: Trained secondary learner """ device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") # We will use the first 512 pairs from our dataset as a test set for # our secondary learner and the rest to train test_dataset = train_dataset[:512] train_dataset = train_dataset[512:] train_dataloader = DataLoader(train_dataset, shuffle=True, batch_size=batch_size) test_dataloader = DataLoader(test_dataset, shuffle=False, batch_size=batch_size) # secondary learner model set up loss = nn.MSELoss() test_loss = nn.MSELoss(reduction="sum") secondary_learner.to(device) q_optimizer = torch.optim.Adam(secondary_learner.parameters(), lr=0.00001) secondary_learner.train() # TODO in original code this is written as number of actual batches seen # not number of items seen but other places it is number of items instead. # improve consistency! changed this to epochs for clarity best_test_loss = float("inf") # Iterate through batches until we've used max_steps batches for epoch in range(int(max_epochs)): tr_q_loss = 0.0 secondary_learner.train() for step, batch in enumerate(train_dataloader): context = batch[0].to(device) real_q = batch[1].to(device) predicted_q = secondary_learner(context) q_optimizer.zero_grad() q_loss = loss(predicted_q, real_q.float()) q_loss.backward() q_optimizer.step() tr_q_loss += q_loss.item() # model trains fairly quickly so we won't wait for a full epoch # eval is triggered at eval_freq and end of epochs if (step % eval_freq == 0 and step > 0) or ((step + 1) == len(train_dataloader)): tr_loss = tr_q_loss / (step + 1) secondary_learner.eval() q_loss2 = 0.0 sum_q2 = 0.0 predicted = [] actual = [] # Compute performance of the secondary learner after this batch for step2, batch2 in enumerate(test_dataloader): features2 = batch2[0].to(device) real_q2 = batch2[1].to(device) predicted_q2 = secondary_learner(features2) q_loss2 += test_loss(predicted_q2, real_q2).item() sum_q2 += torch.sum(predicted_q2).item() for ei, i in enumerate(predicted_q2.cpu().detach().numpy()): predicted.append(i.item()) for ei, i in enumerate(real_q2.cpu().detach().numpy()): actual.append(i.item()) q_loss2 /= len(test_dataset) print( "Epoch: ", epoch, "step: ", step, "Avg. q:", sum_q2 / len(test_dataset), "Train Loss: ", tr_loss, "Test Loss: ", q_loss2, ) if q_loss2 < best_test_loss: joblib.dump((predicted, actual), "pred_vs_actual.jbl") torch.save(secondary_learner.state_dict(), igf_model_path) best_test_loss = q_loss2 secondary_learner.train() return secondary_learner class SecondaryLearner(nn.Module): """ Our secondary learner """ def __init__(self, model): """ We use a simple convolutional network as our secondary learner Args: model: Pre-trained GPT2 model """ # embeddings are from the pretrained model super(SecondaryLearner, self).__init__() self.embeddings = model.transformer.wte self.embeddings.weight = copy.deepcopy(model.transformer.wte.weight) self.conv = nn.Conv1d(self.embeddings.weight.size(1), 256, 3, padding=1) self.fc = nn.Sequential(nn.Linear(256, 32), nn.Dropout(p=0.1), nn.Linear(32, 32), nn.Linear(32, 1)) def forward(self, context): """ Forward pass through the secondary learner Args: context: Context input to the secondary learner Returns: tensor after squeeze operation """ pooled = torch.max(self.conv(self.embeddings(context).squeeze(1).transpose(1, 2)), 2)[0] qs = self.fc(pooled) return qs.squeeze(1) @classmethod def from_pretrained(cls, state_path, model): """ Load the secondary learner Args: state_path: Path to save secondary learner model: Pretrained GPT-2 Returns: secondary learner """ secondary_learner = cls(model) # this calls __init__ state_dict = torch.load(state_path) secondary_learner.load_state_dict(state_dict) secondary_learner.embeddings = model.transformer.wte secondary_learner.embeddings.weight = copy.deepcopy(model.transformer.wte.weight) return secondary_learner