Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,51 +1,54 @@
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
-
from diffusers import StableDiffusionPipeline
|
4 |
-
from
|
|
|
5 |
|
6 |
-
# Load
|
7 |
image_pipe = StableDiffusionPipeline.from_pretrained(
|
8 |
-
"
|
9 |
-
).to("cuda")
|
10 |
|
11 |
-
# Load
|
12 |
-
|
13 |
-
|
14 |
-
).to("cuda")
|
15 |
|
16 |
-
# Function to generate
|
17 |
-
def
|
18 |
image = image_pipe(prompt).images[0]
|
19 |
-
image_path = "
|
20 |
image.save(image_path)
|
21 |
return image_path
|
22 |
|
23 |
-
# Function to
|
24 |
-
def
|
25 |
-
|
26 |
-
|
27 |
-
|
|
|
|
|
28 |
video_output.save(video_path)
|
29 |
return video_path
|
30 |
|
31 |
-
# Gradio
|
32 |
with gr.Blocks() as demo:
|
33 |
-
gr.Markdown("
|
34 |
|
35 |
-
|
36 |
-
|
37 |
-
gr.
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
|
51 |
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
+
from diffusers import StableDiffusionPipeline
|
4 |
+
from transformers import AutoProcessor, AutoModel
|
5 |
+
import os
|
6 |
|
7 |
+
# Load Text-to-Image model (Redshift Diffusion)
|
8 |
image_pipe = StableDiffusionPipeline.from_pretrained(
|
9 |
+
"nitrosocke/redshift-diffusion", torch_dtype=torch.float16
|
10 |
+
).to("cuda" if torch.cuda.is_available() else "cpu")
|
11 |
|
12 |
+
# Load Image-to-Video model (Zeroscope v2 XL)
|
13 |
+
video_model_id = "cerspense/zeroscope_v2_XL"
|
14 |
+
processor = AutoProcessor.from_pretrained(video_model_id)
|
15 |
+
video_model = AutoModel.from_pretrained(video_model_id).to("cuda" if torch.cuda.is_available() else "cpu")
|
16 |
|
17 |
+
# Function to generate image from text
|
18 |
+
def generate_image(prompt):
|
19 |
image = image_pipe(prompt).images[0]
|
20 |
+
image_path = "generated_image.png"
|
21 |
image.save(image_path)
|
22 |
return image_path
|
23 |
|
24 |
+
# Function to convert image to video
|
25 |
+
def generate_video(image_path):
|
26 |
+
with torch.no_grad():
|
27 |
+
inputs = processor(images=image_path, return_tensors="pt").to("cuda" if torch.cuda.is_available() else "cpu")
|
28 |
+
video_output = video_model(**inputs)
|
29 |
+
|
30 |
+
video_path = "generated_video.mp4"
|
31 |
video_output.save(video_path)
|
32 |
return video_path
|
33 |
|
34 |
+
# Gradio Interface
|
35 |
with gr.Blocks() as demo:
|
36 |
+
gr.Markdown("## 🎨 AI Cartoon Image & Video Generator")
|
37 |
|
38 |
+
with gr.Row():
|
39 |
+
prompt_input = gr.Textbox(label="Enter Text Prompt", placeholder="A 3D cartoon cat playing in a park")
|
40 |
+
generate_image_btn = gr.Button("Generate Image")
|
41 |
+
|
42 |
+
image_output = gr.Image(label="Generated Image")
|
43 |
+
|
44 |
+
with gr.Row():
|
45 |
+
generate_video_btn = gr.Button("Convert to Video")
|
46 |
+
video_output = gr.Video(label="Generated Video")
|
47 |
+
|
48 |
+
download_image = gr.File(label="Download Image")
|
49 |
+
download_video = gr.File(label="Download Video")
|
50 |
+
|
51 |
+
generate_image_btn.click(generate_image, inputs=[prompt_input], outputs=[image_output, download_image])
|
52 |
+
generate_video_btn.click(generate_video, inputs=[image_output], outputs=[video_output, download_video])
|
53 |
|
54 |
demo.launch()
|