File size: 4,659 Bytes
8f28ceb
 
 
 
 
 
 
 
473e3b4
 
 
8f28ceb
 
473e3b4
 
 
 
 
8f28ceb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aeafe2c
 
 
8f28ceb
aeafe2c
8f28ceb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aeafe2c
8f28ceb
 
 
 
 
aeafe2c
8f28ceb
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer
from sentence_transformers import SentenceTransformer
from PyPDF2 import PdfReader
import numpy as np
import torch

class RAGChatbot:
    def __init__(self, 
                 model_name="facebook/opt-350m", 
                 embedding_model="all-MiniLM-L6-v2"):
        # Initialize tokenizer and model
        self.tokenizer = AutoTokenizer.from_pretrained(model_name)
        self.model = AutoModelForCausalLM.from_pretrained(
            model_name, 
            torch_dtype=torch.float16, 
            device_map="auto"
        )
        
        # Initialize embedding model
        self.embedding_model = SentenceTransformer(embedding_model)
        
        # Initialize document storage
        self.documents = []
        self.embeddings = []

    def extract_text_from_pdf(self, pdf_path):
        reader = PdfReader(pdf_path)
        text = ""
        for page in reader.pages:
            text += page.extract_text() + "\n"
        return text

    def load_documents(self, file_paths):
        self.documents = []
        self.embeddings = []
        
        for file_path in file_paths:
            if file_path.endswith('.pdf'):
                text = self.extract_text_from_pdf(file_path)
            else:
                with open(file_path, 'r', encoding='utf-8') as f:
                    text = f.read()
            
            # Split text into chunks
            chunks = [text[i:i+500] for i in range(0, len(text), 500)]
            self.documents.extend(chunks)
        
        # Generate embeddings
        self.embeddings = self.embedding_model.encode(self.documents)
        return f"Loaded {len(self.documents)} text chunks from {len(file_paths)} files"

    def retrieve_relevant_context(self, query, top_k=3):
        if not self.documents:
            return "No documents loaded"
        
        # Generate query embedding
        query_embedding = self.embedding_model.encode([query])[0]
        
        # Calculate cosine similarities
        similarities = np.dot(self.embeddings, query_embedding) / (
            np.linalg.norm(self.embeddings, axis=1) * np.linalg.norm(query_embedding)
        )
        
        # Get top k most similar documents
        top_indices = similarities.argsort()[-top_k:][::-1]
        return " ".join([self.documents[i] for i in top_indices])

    def generate_response(self, query, context):
        # Construct prompt with context
        full_prompt = f"Context: {context}\n\nQuestion: {query}\n\nAnswer:"
        
        # Generate response
        inputs = self.tokenizer(full_prompt, return_tensors="pt").to(self.model.device)
        outputs = self.model.generate(**inputs, max_new_tokens=150)
        response = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
        
        return response.split("Answer:")[-1].strip()

    def chat(self, query, history):
        try:
            # Retrieve relevant context
            context = self.retrieve_relevant_context(query)
            
            # Generate response
            response = self.generate_response(query, context)
            
            # Append to history and return as list of tuples
            updated_history = history + [[query, response]]
            return updated_history
        except Exception as e:
            return history + [[query, f"An error occurred: {str(e)}"]]

# Create Gradio interface
def create_interface():
    rag_chatbot = RAGChatbot()

    with gr.Blocks() as demo:
        gr.Markdown("# RAG Chatbot with Hugging Face Models")
        
        with gr.Row():
            file_input = gr.File(label="Upload Documents", file_count="multiple", type="filepath")
            load_btn = gr.Button("Load Documents")
        
        status_output = gr.Textbox(label="Load Status")
        
        chatbot = gr.Chatbot()
        msg = gr.Textbox(label="Enter your query")
        submit_btn = gr.Button("Send")
        clear_btn = gr.Button("Clear Chat")

        # Event handlers
        load_btn.click(
            rag_chatbot.load_documents, 
            inputs=[file_input], 
            outputs=[status_output]
        )
        
        submit_btn.click(
            rag_chatbot.chat, 
            inputs=[msg, chatbot], 
            outputs=[chatbot, msg]
        )
        
        msg.submit(
            rag_chatbot.chat, 
            inputs=[msg, chatbot], 
            outputs=[chatbot, msg]
        )
        
        clear_btn.click(lambda: None, None, [chatbot, msg])

    return demo

# Launch the app
if __name__ == "__main__":
    demo = create_interface()
    demo.launch()