Spaces:
Runtime error
Runtime error
import os | |
import re | |
import tempfile | |
from collections.abc import Iterator | |
from threading import Thread | |
import cv2 | |
import gradio as gr | |
import spaces | |
import torch | |
from loguru import logger | |
from PIL import Image | |
from transformers import AutoProcessor, Gemma3ForConditionalGeneration, TextIteratorStreamer | |
model_id = os.getenv("MODEL_ID", "google/gemma-3-12b-it") | |
processor = AutoProcessor.from_pretrained(model_id, padding_side="left") | |
model = Gemma3ForConditionalGeneration.from_pretrained( | |
model_id, device_map="auto", torch_dtype=torch.bfloat16, attn_implementation="eager" | |
) | |
MAX_NUM_IMAGES = int(os.getenv("MAX_NUM_IMAGES", "5")) | |
def count_files_in_new_message(paths: list[str]) -> tuple[int, int]: | |
image_count = 0 | |
video_count = 0 | |
for path in paths: | |
if path.endswith(".mp4"): | |
video_count += 1 | |
else: | |
image_count += 1 | |
return image_count, video_count | |
def count_files_in_history(history: list[dict]) -> tuple[int, int]: | |
image_count = 0 | |
video_count = 0 | |
for item in history: | |
if item["role"] != "user" or isinstance(item["content"], str): | |
continue | |
if item["content"][0].endswith(".mp4"): | |
video_count += 1 | |
else: | |
image_count += 1 | |
return image_count, video_count | |
def validate_media_constraints(message: dict, history: list[dict]) -> bool: | |
new_image_count, new_video_count = count_files_in_new_message(message["files"]) | |
history_image_count, history_video_count = count_files_in_history(history) | |
image_count = history_image_count + new_image_count | |
video_count = history_video_count + new_video_count | |
if video_count > 1: | |
gr.Warning("Only one video is supported.") | |
return False | |
if video_count == 1: | |
if image_count > 0: | |
gr.Warning("Mixing images and videos is not allowed.") | |
return False | |
if "<image>" in message["text"]: | |
gr.Warning("Using <image> tags with video files is not supported.") | |
return False | |
if video_count == 0 and image_count > MAX_NUM_IMAGES: | |
gr.Warning(f"You can upload up to {MAX_NUM_IMAGES} images.") | |
return False | |
if "<image>" in message["text"] and message["text"].count("<image>") != new_image_count: | |
gr.Warning("The number of <image> tags in the text does not match the number of images.") | |
return False | |
return True | |
def downsample_video(video_path: str) -> list[tuple[Image.Image, float]]: | |
vidcap = cv2.VideoCapture(video_path) | |
fps = vidcap.get(cv2.CAP_PROP_FPS) | |
total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT)) | |
frame_interval = max(total_frames // MAX_NUM_IMAGES, 1) | |
frames: list[tuple[Image.Image, float]] = [] | |
for i in range(0, min(total_frames, MAX_NUM_IMAGES * frame_interval), frame_interval): | |
if len(frames) >= MAX_NUM_IMAGES: | |
break | |
vidcap.set(cv2.CAP_PROP_POS_FRAMES, i) | |
success, image = vidcap.read() | |
if success: | |
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) | |
pil_image = Image.fromarray(image) | |
timestamp = round(i / fps, 2) | |
frames.append((pil_image, timestamp)) | |
vidcap.release() | |
return frames | |
def process_video(video_path: str) -> list[dict]: | |
content = [] | |
frames = downsample_video(video_path) | |
for frame in frames: | |
pil_image, timestamp = frame | |
with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as temp_file: | |
pil_image.save(temp_file.name) | |
content.append({"type": "text", "text": f"Frame {timestamp}:"}) | |
content.append({"type": "image", "url": temp_file.name}) | |
logger.debug(f"{content=}") | |
return content | |
def process_interleaved_images(message: dict) -> list[dict]: | |
logger.debug(f"{message['files']=}") | |
parts = re.split(r"(<image>)", message["text"]) | |
logger.debug(f"{parts=}") | |
content = [] | |
image_index = 0 | |
for part in parts: | |
logger.debug(f"{part=}") | |
if part == "<image>": | |
content.append({"type": "image", "url": message["files"][image_index]}) | |
logger.debug(f"file: {message['files'][image_index]}") | |
image_index += 1 | |
elif part.strip(): | |
content.append({"type": "text", "text": part.strip()}) | |
elif isinstance(part, str) and part != "<image>": | |
content.append({"type": "text", "text": part}) | |
logger.debug(f"{content=}") | |
return content | |
def process_new_user_message(message: dict) -> list[dict]: | |
if not message["files"]: | |
return [{"type": "text", "text": message["text"]}] | |
if message["files"][0].endswith(".mp4"): | |
return [{"type": "text", "text": message["text"]}, *process_video(message["files"][0])] | |
if "<image>" in message["text"]: | |
return process_interleaved_images(message) | |
return [ | |
{"type": "text", "text": message["text"]}, | |
*[{"type": "image", "url": path} for path in message["files"]], | |
] | |
def process_history(history: list[dict]) -> list[dict]: | |
messages = [] | |
current_user_content: list[dict] = [] | |
for item in history: | |
if item["role"] == "assistant": | |
if current_user_content: | |
messages.append({"role": "user", "content": current_user_content}) | |
current_user_content = [] | |
messages.append({"role": "assistant", "content": [{"type": "text", "text": item["content"]}]}) | |
else: | |
content = item["content"] | |
if isinstance(content, str): | |
current_user_content.append({"type": "text", "text": content}) | |
else: | |
current_user_content.append({"type": "image", "url": content[0]}) | |
return messages | |
def run(message: dict, history: list[dict], system_prompt: str = "", max_new_tokens: int = 512) -> Iterator[str]: | |
if not validate_media_constraints(message, history): | |
yield "" | |
return | |
messages = [] | |
if system_prompt: | |
messages.append({"role": "system", "content": [{"type": "text", "text": system_prompt}]}) | |
messages.extend(process_history(history)) | |
messages.append({"role": "user", "content": process_new_user_message(message)}) | |
inputs = processor.apply_chat_template( | |
messages, | |
add_generation_prompt=True, | |
tokenize=True, | |
return_dict=True, | |
return_tensors="pt", | |
).to(device=model.device, dtype=torch.bfloat16) | |
streamer = TextIteratorStreamer(processor, timeout=30.0, skip_prompt=True, skip_special_tokens=True) | |
generate_kwargs = dict( | |
inputs, | |
streamer=streamer, | |
max_new_tokens=max_new_tokens, | |
) | |
t = Thread(target=model.generate, kwargs=generate_kwargs) | |
t.start() | |
output = "" | |
for delta in streamer: | |
output += delta | |
yield output | |
examples = [ | |
[ | |
{ | |
"text": "What would be the impact of peace in Ukraine?", | |
"files": [], | |
} | |
], | |
[ | |
{ | |
"text": "Replicate QQQ without Alphabet exposure with a minimal number of other liquid ETFs or stocks", | |
"files": [], | |
} | |
] | |
[ | |
{ | |
"text": "Write the matplotlib code to generate the same bar chart.", | |
"files": ["assets/additional-examples/barchart.png"], | |
} | |
] | |
] | |
DESCRIPTION = """\ | |
ChatFinanz | |
""" | |
demo = gr.ChatInterface( | |
fn=run, | |
type="messages", | |
chatbot=gr.Chatbot(type="messages", scale=1, allow_tags=["image"]), | |
textbox=gr.MultimodalTextbox(file_types=["image", ".mp4"], file_count="multiple", autofocus=True), | |
multimodal=True, | |
additional_inputs=[ | |
gr.Textbox(label="System Prompt", value="You are a helpful assistant."), | |
gr.Slider(label="Max New Tokens", minimum=100, maximum=2000, step=10, value=700), | |
], | |
stop_btn=False, | |
title="Gemma 3 12B IT", | |
description=DESCRIPTION, | |
examples=examples, | |
run_examples_on_click=False, | |
cache_examples=False, | |
css_paths="style.css", | |
delete_cache=(1800, 1800), | |
) | |
if __name__ == "__main__": | |
demo.launch() |