Spaces:
Running
Running
import streamlit as st | |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM | |
def load_model(): | |
model_name = "Salesforce/codet5-small" | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
model = AutoModelForSeq2SeqLM.from_pretrained(model_name) | |
return tokenizer, model | |
# Load the model and tokenizer (cached) | |
with st.spinner("Loading model..."): | |
tokenizer, model = load_model() | |
# Streamlit UI | |
st.title("Code Generator with Hugging Face") | |
st.write("Generate code snippets from natural language prompts!") | |
prompt = st.text_area("Enter your coding task:", placeholder="Write a Python function to calculate factorial.") | |
max_length = st.slider("Select maximum length of generated code:", min_value=20, max_value=200, value=50, step=10) | |
if st.button("Generate Code"): | |
if prompt.strip(): | |
with st.spinner("Generating code..."): | |
inputs = tokenizer(prompt, return_tensors="pt", truncation=True, padding=True) | |
outputs = model.generate(inputs.input_ids, max_length=max_length, num_beams=4, early_stopping=True) | |
generated_code = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
st.text_area("Generated Code:", generated_code, height=200) | |
else: | |
st.warning("Please enter a prompt!") | |