Spaces:
Running
Running
import os | |
import logging | |
from config.config import ConfigConstants | |
from langchain_huggingface import HuggingFaceEmbeddings | |
from langchain_community.vectorstores import FAISS | |
class VectorStoreManager: | |
def __init__(self, embedding_path="embeddings.faiss"): | |
""" | |
Initialize the vector store manager. | |
Args: | |
embedding_path (str): Path to save/load the FAISS index. | |
""" | |
self.embedding_path = embedding_path | |
self.embedding_model = HuggingFaceEmbeddings(model_name=ConfigConstants.EMBEDDING_MODEL_NAME) | |
self.vector_store = self._initialize_vector_store() | |
def _initialize_vector_store(self): | |
"""Initialize or load the FAISS vector store.""" | |
if os.path.exists(self.embedding_path): | |
logging.info("Loading embeddings from local file") | |
return FAISS.load_local( | |
self.embedding_path, | |
self.embedding_model, | |
allow_dangerous_deserialization=True | |
) | |
else: | |
'''logging.info("Creating new vector store") | |
# Return an empty vector store; it will be populated when documents are added | |
return FAISS.from_texts( | |
texts=[""], # Dummy text to initialize | |
embedding=self.embedding_model, | |
metadatas=[{"source": "init", "doc_id": "init"}] | |
)''' | |
logging.info("Creating new vector store (unpopulated)") | |
return None | |
def add_documents(self, documents): | |
""" | |
Add new documents to the vector store and save it. | |
Args: | |
documents (list): List of dictionaries with 'text', 'source', and 'doc_id'. | |
""" | |
if not documents: | |
return | |
texts = [doc['text'] for doc in documents] | |
metadatas = [{'source': doc['source'], 'doc_id': doc['doc_id']} for doc in documents] | |
logging.info("Adding new documents to vector store") | |
if not self.vector_store: | |
self.vector_store = FAISS.from_texts( | |
texts=texts, | |
embedding=self.embedding_model, | |
metadatas=metadatas | |
) | |
else: | |
self.vector_store.add_texts(texts=texts, metadatas=metadatas) | |
self.vector_store.save_local(self.embedding_path) | |
logging.info(f"Vector store updated and saved to {self.embedding_path}") | |
def search(self, query, doc_id, k=10): | |
""" | |
Search the vector store for relevant chunks, filtered by doc_id. | |
Args: | |
query (str): The user's query. | |
doc_id (str): The document ID to filter by. | |
k (int): Number of results to return. | |
Returns: | |
list: List of relevant document chunks with metadata and scores. | |
""" | |
if not self.vector_store: | |
return [] | |
try: | |
query = " ".join(query.lower().split()) | |
# Define a filter function to match doc_id | |
filter_fn = lambda metadata: metadata['doc_id'] == doc_id | |
# Perform similarity search with filter | |
results = self.vector_store.similarity_search_with_score( | |
query=query, | |
k=k, | |
filter=filter_fn | |
) | |
# Format results | |
return [{'text': doc.page_content, 'metadata': doc.metadata, 'score': score} for doc, score in results] | |
except Exception as e: | |
logging.error(f"Error during vector store search: {str(e)}") | |
return [] |