Spaces:
Running
Running
import logging | |
import os | |
from typing import Any, Dict, List | |
import uuid | |
from data.document_loader import DocumentLoader | |
from data.pdf_reader import PDFReader | |
from retriever.chunk_documents import chunk_documents | |
from retriever.vector_store_manager import VectorStoreManager | |
class DocumentManager: | |
def __init__(self): | |
self.doc_loader = DocumentLoader() | |
self.pdf_reader = PDFReader() | |
self.vector_manager = VectorStoreManager() | |
self.uploaded_documents = {} | |
self.chunked_documents = {} | |
self.document_ids = {} | |
logging.info("DocumentManager initialized") | |
def process_document(self, file): | |
""" | |
Process an uploaded file: load, read PDF, chunk, and store in vector store. | |
Returns: (status_message, page_list, filename, doc_id) | |
""" | |
try: | |
if file is None: | |
return "No file uploaded", None, None | |
logging.info(f"Processing file: {file}") | |
# Load and validate file | |
file_path = self.doc_loader.load_file(file) | |
filename = os.path.basename(file_path) | |
# Read PDF content | |
page_list = self.pdf_reader.read_pdf(file_path) | |
# Store the uploaded document | |
self.uploaded_documents[filename] = file_path | |
# Generate a unique document ID | |
doc_id = str(uuid.uuid4()) | |
self.document_ids[filename] = doc_id | |
# Chunk the pages | |
chunks = chunk_documents(page_list, doc_id, chunk_size=2000, chunk_overlap=300) | |
self.chunked_documents[filename] = chunks | |
# Add chunks to vector store | |
self.vector_manager.add_documents(chunks) | |
return ( | |
f"Successfully loaded {filename} with {len(page_list)} pages", | |
filename, | |
doc_id | |
) | |
except Exception as e: | |
logging.error(f"Error processing document: {str(e)}") | |
return f"Error: {str(e)}", [], None, None | |
def get_uploaded_documents(self): | |
"""Return the list of uploaded document filenames.""" | |
return list(self.uploaded_documents.keys()) | |
def get_chunks(self, filename): | |
"""Return chunks for a given filename.""" | |
return self.chunked_documents.get(filename, []) | |
def get_document_id(self, filename): | |
"""Return the document ID for a given filename.""" | |
return self.document_ids.get(filename, None) | |
def retrieve_top_k(self, query: str, selected_docs: List[str], k: int = 5) -> List[Dict[str, Any]]: | |
""" | |
Retrieve the top K chunks across the selected documents based on the user's query. | |
Args: | |
query (str): The user's query. | |
selected_docs (List[str]): List of selected document filenames from the dropdown. | |
k (int): Number of top results to return (default is 5). | |
Returns: | |
List[Dict[str, Any]]: List of top K chunks with their text, metadata, and scores. | |
""" | |
if not selected_docs: | |
logging.warning("No documents selected for retrieval") | |
return [] | |
all_results = [] | |
for filename in selected_docs: | |
doc_id = self.get_document_id(filename) | |
if not doc_id: | |
logging.warning(f"No document ID found for filename: {filename}") | |
continue | |
# Search for relevant chunks within this document | |
results = self.vector_manager.search(query, doc_id, k=k) | |
all_results.extend(results) | |
# Sort all results by score in descending order and take the top K | |
all_results.sort(key=lambda x: x['score'], reverse=True) | |
top_k_results = all_results[:k] | |
# Log the list of retrieved documents | |
#logging.info(f"Result from search :{all_results} ") | |
logging.info(f"Retrieved top {k} documents:") | |
for i, result in enumerate(top_k_results, 1): | |
doc_id = result['metadata'].get('doc_id', 'Unknown') | |
filename = next((name for name, d_id in self.document_ids.items() if d_id == doc_id), 'Unknown') | |
logging.info(f"{i}. Filename: {filename}, Doc ID: {doc_id}, Score: {result['score']:.4f}, Text: {result['text'][:200]}...") | |
return top_k_results | |
def retrieve_summary_chunks(self, query: str, doc_id : str, k: int = 10): | |
logging.info(f"Retrieving {k} chunks for summary: {query}, Document Id: {doc_id}") | |
results = self.vector_manager.search(query, doc_id, k=k) | |
top_k_results = results[:k] | |
logging.info(f"Retrieved {len(top_k_results)} chunks for summary") | |
return top_k_results |