Update agents.py
Browse files
agents.py
CHANGED
@@ -1,4 +1,3 @@
|
|
1 |
-
import os
|
2 |
import re
|
3 |
from datetime import datetime
|
4 |
from typing import Annotated
|
@@ -28,19 +27,6 @@ from prompts import WEB_SEARCH_PROMPT, YOUTUBE_PROMPT, MULTIMODAL_PROMPT
|
|
28 |
# Load environment variables from .env file
|
29 |
load_dotenv()
|
30 |
|
31 |
-
# Initialize OpenAI LLM (gpt-4o) for general and web search tasks
|
32 |
-
openai_llm = ChatOpenAI(
|
33 |
-
model="gpt-4o",
|
34 |
-
use_responses_api=True,
|
35 |
-
api_key=os.getenv("OPENAI_API_KEY")
|
36 |
-
)
|
37 |
-
|
38 |
-
# Initialize Google Gemini LLM for YouTube and multimodal tasks
|
39 |
-
google_llm = ChatGoogleGenerativeAI(
|
40 |
-
model="gemini-2.5-flash-preview-04-17",
|
41 |
-
google_api_key=os.getenv("GOOGLE_API_KEY"),
|
42 |
-
)
|
43 |
-
|
44 |
class AgentState(MessagesState):
|
45 |
"""
|
46 |
State class for agent workflows, tracks the message history.
|
@@ -85,133 +71,157 @@ def youtube_transcript(video_url: str, raw: bool = False) -> str:
|
|
85 |
except Exception as e:
|
86 |
return f"An error occurred while fetching the transcript: {e}"
|
87 |
|
88 |
-
|
89 |
-
tools = [youtube_transcript]
|
90 |
-
|
91 |
-
def create_web_search_graph() -> StateGraph:
|
92 |
"""
|
93 |
-
|
|
|
|
|
|
|
|
|
94 |
|
95 |
Returns:
|
96 |
-
|
97 |
"""
|
98 |
-
|
99 |
-
|
100 |
-
|
|
|
|
|
|
|
101 |
|
102 |
-
|
103 |
-
|
104 |
-
|
|
|
|
|
105 |
|
106 |
-
|
107 |
-
|
|
|
|
|
|
|
108 |
|
109 |
Returns:
|
110 |
-
|
111 |
"""
|
112 |
-
current_date = datetime.now().strftime("%B %d, %Y")
|
113 |
-
# Format the system prompt with the current date
|
114 |
-
system_message = SystemMessage(content=WEB_SEARCH_PROMPT.format(current_date=current_date))
|
115 |
-
# Re-bind tools for each invocation (defensive)
|
116 |
web_search_preview = [{"type": "web_search_preview"}]
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
137 |
"""
|
138 |
-
|
139 |
-
|
140 |
-
Args:
|
141 |
-
state (AgentState): The current agent state.
|
142 |
|
143 |
Returns:
|
144 |
-
|
145 |
"""
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
173 |
|
174 |
-
|
175 |
-
StateGraph: The compiled multimodal agent workflow.
|
176 |
-
"""
|
177 |
-
def agent_node(state: AgentState) -> dict:
|
178 |
"""
|
179 |
-
|
180 |
-
|
181 |
-
Args:
|
182 |
-
state (AgentState): The current agent state.
|
183 |
|
184 |
Returns:
|
185 |
-
|
186 |
"""
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
213 |
)
|
214 |
-
)
|
215 |
|
216 |
-
# Compile the supervisor agent for use in the application
|
217 |
-
supervisor_agent = supervisor_workflow.compile(name="supervisor_agent")
|
|
|
|
|
|
1 |
import re
|
2 |
from datetime import datetime
|
3 |
from typing import Annotated
|
|
|
27 |
# Load environment variables from .env file
|
28 |
load_dotenv()
|
29 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
class AgentState(MessagesState):
|
31 |
"""
|
32 |
State class for agent workflows, tracks the message history.
|
|
|
71 |
except Exception as e:
|
72 |
return f"An error occurred while fetching the transcript: {e}"
|
73 |
|
74 |
+
def build_supervisor_agent(openai_key, google_key):
|
|
|
|
|
|
|
75 |
"""
|
76 |
+
Build the supervisor agent with the provided API keys.
|
77 |
+
|
78 |
+
Args:
|
79 |
+
openai_key (str): OpenAI API key.
|
80 |
+
google_key (str): Google API key.
|
81 |
|
82 |
Returns:
|
83 |
+
supervisor_agent: The compiled supervisor agent.
|
84 |
"""
|
85 |
+
# Initialize OpenAI LLM (gpt-4o) for general and web search tasks
|
86 |
+
openai_llm = ChatOpenAI(
|
87 |
+
model="gpt-4o",
|
88 |
+
use_responses_api=True,
|
89 |
+
api_key=openai_key
|
90 |
+
)
|
91 |
|
92 |
+
# Initialize Google Gemini LLM for YouTube and multimodal tasks
|
93 |
+
google_llm = ChatGoogleGenerativeAI(
|
94 |
+
model="gemini-2.5-flash-preview-04-17",
|
95 |
+
google_api_key=google_key,
|
96 |
+
)
|
97 |
|
98 |
+
tools = [youtube_transcript]
|
99 |
+
|
100 |
+
def create_web_search_graph() -> StateGraph:
|
101 |
+
"""
|
102 |
+
Create the web search agent graph.
|
103 |
|
104 |
Returns:
|
105 |
+
StateGraph: The compiled web search agent workflow.
|
106 |
"""
|
|
|
|
|
|
|
|
|
107 |
web_search_preview = [{"type": "web_search_preview"}]
|
108 |
+
# Bind the web search tool to the OpenAI LLM
|
109 |
+
llm_with_tools = openai_llm.bind_tools(web_search_preview)
|
110 |
+
|
111 |
+
def agent_node(state: AgentState) -> dict:
|
112 |
+
"""
|
113 |
+
Node function for handling web search queries.
|
114 |
+
|
115 |
+
Args:
|
116 |
+
state (AgentState): The current agent state.
|
117 |
+
|
118 |
+
Returns:
|
119 |
+
dict: Updated state with the LLM response.
|
120 |
+
"""
|
121 |
+
current_date = datetime.now().strftime("%B %d, %Y")
|
122 |
+
# Format the system prompt with the current date
|
123 |
+
system_message = SystemMessage(content=WEB_SEARCH_PROMPT.format(current_date=current_date))
|
124 |
+
# Re-bind tools for each invocation (defensive)
|
125 |
+
web_search_preview = [{"type": "web_search_preview"}]
|
126 |
+
response = llm_with_tools.bind_tools(web_search_preview).invoke(
|
127 |
+
[system_message] + state.get("messages")
|
128 |
+
)
|
129 |
+
return {"messages": state.get("messages") + [response]}
|
130 |
+
|
131 |
+
# Build the workflow graph
|
132 |
+
workflow = StateGraph(AgentState)
|
133 |
+
workflow.add_node("agent", agent_node)
|
134 |
+
workflow.add_edge(START, "agent")
|
135 |
+
workflow.add_edge("agent", END)
|
136 |
+
return workflow.compile(name="web_search_agent")
|
137 |
+
|
138 |
+
def create_youtube_viwer_graph() -> StateGraph:
|
139 |
"""
|
140 |
+
Create the YouTube viewer agent graph.
|
|
|
|
|
|
|
141 |
|
142 |
Returns:
|
143 |
+
StateGraph: The compiled YouTube viewer agent workflow.
|
144 |
"""
|
145 |
+
def agent_node(state: AgentState) -> dict:
|
146 |
+
"""
|
147 |
+
Node function for handling YouTube-related queries.
|
148 |
+
|
149 |
+
Args:
|
150 |
+
state (AgentState): The current agent state.
|
151 |
+
|
152 |
+
Returns:
|
153 |
+
dict: Updated state with the LLM response.
|
154 |
+
"""
|
155 |
+
current_date = datetime.now().strftime("%B %d, %Y")
|
156 |
+
# Format the system prompt with the current date
|
157 |
+
system_message = SystemMessage(content=YOUTUBE_PROMPT.format(current_date=current_date))
|
158 |
+
# Bind the YouTube transcript tool to the Gemini LLM
|
159 |
+
llm_with_tools = google_llm.bind_tools(tools)
|
160 |
+
response = llm_with_tools.invoke([system_message] + state.get("messages"))
|
161 |
+
return {"messages": state.get("messages") + [response]}
|
162 |
+
|
163 |
+
# Build the workflow graph with tool node and conditional routing
|
164 |
+
workflow = StateGraph(AgentState)
|
165 |
+
workflow.add_node("llm", agent_node)
|
166 |
+
workflow.add_node("tools", ToolNode(tools))
|
167 |
+
workflow.set_entry_point("llm")
|
168 |
+
workflow.add_conditional_edges(
|
169 |
+
"llm",
|
170 |
+
tools_condition,
|
171 |
+
{
|
172 |
+
"tools": "tools", # If tool is needed, go to tools node
|
173 |
+
"__end__": END, # Otherwise, end the workflow
|
174 |
+
},
|
175 |
+
)
|
176 |
+
workflow.add_edge("tools", "llm") # After tool, return to LLM node
|
177 |
+
return workflow.compile(name="youtube_viwer_agent")
|
178 |
|
179 |
+
def create_multimodal_agent_graph() -> StateGraph:
|
|
|
|
|
|
|
180 |
"""
|
181 |
+
Create the multimodal agent graph using Gemini for best multimodal support.
|
|
|
|
|
|
|
182 |
|
183 |
Returns:
|
184 |
+
StateGraph: The compiled multimodal agent workflow.
|
185 |
"""
|
186 |
+
def agent_node(state: AgentState) -> dict:
|
187 |
+
"""
|
188 |
+
Node function for handling multimodal queries.
|
189 |
+
|
190 |
+
Args:
|
191 |
+
state (AgentState): The current agent state.
|
192 |
+
|
193 |
+
Returns:
|
194 |
+
dict: Updated state with the LLM response.
|
195 |
+
"""
|
196 |
+
current_date = datetime.now().strftime("%B %d, %Y")
|
197 |
+
# Compose the system message with the multimodal prompt and current date
|
198 |
+
system_message = SystemMessage(content=MULTIMODAL_PROMPT + f" Today's date: {current_date}.")
|
199 |
+
messages = [system_message] + state.get("messages")
|
200 |
+
# Invoke Gemini LLM for multimodal reasoning
|
201 |
+
response = google_llm.invoke(messages)
|
202 |
+
return {"messages": state.get("messages") + [response]}
|
203 |
+
|
204 |
+
# Build the workflow graph
|
205 |
+
workflow = StateGraph(AgentState)
|
206 |
+
workflow.add_node("agent", agent_node)
|
207 |
+
workflow.add_edge(START, "agent")
|
208 |
+
workflow.add_edge("agent", END)
|
209 |
+
return workflow.compile(name="multimodal_agent")
|
210 |
+
|
211 |
+
# Instantiate the agent graphs
|
212 |
+
multimodal_agent = create_multimodal_agent_graph()
|
213 |
+
web_search_agent = create_web_search_graph()
|
214 |
+
youtube_agent = create_youtube_viwer_graph()
|
215 |
+
|
216 |
+
# Create the supervisor workflow to route queries to the appropriate sub-agent
|
217 |
+
supervisor_workflow = create_supervisor(
|
218 |
+
[web_search_agent, youtube_agent, multimodal_agent],
|
219 |
+
model=openai_llm,
|
220 |
+
prompt=(
|
221 |
+
"You are a supervisor. For each question, call one of your sub-agents and return their answer directly to the user. Do not modify, summarize, or rephrase the answer."
|
222 |
+
)
|
223 |
)
|
|
|
224 |
|
225 |
+
# Compile the supervisor agent for use in the application
|
226 |
+
supervisor_agent = supervisor_workflow.compile(name="supervisor_agent")
|
227 |
+
return supervisor_agent
|