add agents and prompts
Browse files- agents.py +217 -0
- prompts.py +26 -0
agents.py
ADDED
@@ -0,0 +1,217 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import re
|
3 |
+
from datetime import datetime
|
4 |
+
from typing import Annotated
|
5 |
+
|
6 |
+
from dotenv import load_dotenv
|
7 |
+
from pydantic import BaseModel, Field
|
8 |
+
|
9 |
+
from langchain_core.messages import SystemMessage
|
10 |
+
from langchain_core.tools import tool
|
11 |
+
from langchain_google_genai import ChatGoogleGenerativeAI
|
12 |
+
from langchain_openai import ChatOpenAI
|
13 |
+
|
14 |
+
from langgraph.graph import END, START, MessagesState, StateGraph
|
15 |
+
from langgraph.graph.message import add_messages
|
16 |
+
from langgraph.prebuilt import ToolNode, tools_condition
|
17 |
+
from langgraph_supervisor.supervisor import create_supervisor
|
18 |
+
|
19 |
+
from youtube_transcript_api import (
|
20 |
+
NoTranscriptFound,
|
21 |
+
TranscriptsDisabled,
|
22 |
+
VideoUnavailable,
|
23 |
+
YouTubeTranscriptApi,
|
24 |
+
)
|
25 |
+
|
26 |
+
from prompts import WEB_SEARCH_PROMPT, YOUTUBE_PROMPT, MULTIMODAL_PROMPT
|
27 |
+
|
28 |
+
# Load environment variables from .env file
|
29 |
+
load_dotenv()
|
30 |
+
|
31 |
+
# Initialize OpenAI LLM (gpt-4o) for general and web search tasks
|
32 |
+
openai_llm = ChatOpenAI(
|
33 |
+
model="gpt-4o",
|
34 |
+
use_responses_api=True,
|
35 |
+
api_key=os.getenv("OPENAI_API_KEY")
|
36 |
+
)
|
37 |
+
|
38 |
+
# Initialize Google Gemini LLM for YouTube and multimodal tasks
|
39 |
+
google_llm = ChatGoogleGenerativeAI(
|
40 |
+
model="gemini-2.5-flash-preview-04-17",
|
41 |
+
google_api_key=os.getenv("GOOGLE_API_KEY"),
|
42 |
+
)
|
43 |
+
|
44 |
+
class AgentState(MessagesState):
|
45 |
+
"""
|
46 |
+
State class for agent workflows, tracks the message history.
|
47 |
+
"""
|
48 |
+
messages: Annotated[list, add_messages]
|
49 |
+
|
50 |
+
class YouTubeTranscriptInput(BaseModel):
|
51 |
+
"""
|
52 |
+
Input schema for the YouTube transcript tool.
|
53 |
+
"""
|
54 |
+
video_url: str = Field(description="YouTube URL or video ID.")
|
55 |
+
raw: bool = Field(default=False, description="Include timestamps?")
|
56 |
+
|
57 |
+
@tool("youtube_transcript", args_schema=YouTubeTranscriptInput)
|
58 |
+
def youtube_transcript(video_url: str, raw: bool = False) -> str:
|
59 |
+
"""
|
60 |
+
Fetches the transcript of a YouTube video given its URL or ID.
|
61 |
+
Returns plain text (no timestamps) or raw with timestamps.
|
62 |
+
"""
|
63 |
+
# Extract video ID from URL or use as-is if already an ID
|
64 |
+
if "youtube.com" in video_url or "youtu.be" in video_url:
|
65 |
+
match = re.search(r"(?:v=|youtu.be/)([\w-]{11})", video_url)
|
66 |
+
if not match:
|
67 |
+
return "Invalid YouTube URL or ID."
|
68 |
+
video_id = match.group(1)
|
69 |
+
else:
|
70 |
+
video_id = video_url.strip()
|
71 |
+
try:
|
72 |
+
# Fetch transcript using the API
|
73 |
+
transcript = YouTubeTranscriptApi.get_transcript(video_id)
|
74 |
+
if raw:
|
75 |
+
# Return transcript with timestamps
|
76 |
+
return "\n".join(f"{int(e['start'])}s: {e['text']}" for e in transcript)
|
77 |
+
# Return plain transcript text
|
78 |
+
return " ".join(e['text'] for e in transcript)
|
79 |
+
except TranscriptsDisabled:
|
80 |
+
return "Transcripts are disabled for this video."
|
81 |
+
except NoTranscriptFound:
|
82 |
+
return "No transcript found for this video."
|
83 |
+
except VideoUnavailable:
|
84 |
+
return "This video is unavailable."
|
85 |
+
except Exception as e:
|
86 |
+
return f"An error occurred while fetching the transcript: {e}"
|
87 |
+
|
88 |
+
# List of available tools for the agent (currently only YouTube transcript)
|
89 |
+
tools = [youtube_transcript]
|
90 |
+
|
91 |
+
def create_web_search_graph() -> StateGraph:
|
92 |
+
"""
|
93 |
+
Create the web search agent graph.
|
94 |
+
|
95 |
+
Returns:
|
96 |
+
StateGraph: The compiled web search agent workflow.
|
97 |
+
"""
|
98 |
+
web_search_preview = [{"type": "web_search_preview"}]
|
99 |
+
# Bind the web search tool to the OpenAI LLM
|
100 |
+
llm_with_tools = openai_llm.bind_tools(web_search_preview)
|
101 |
+
|
102 |
+
def agent_node(state: AgentState) -> dict:
|
103 |
+
"""
|
104 |
+
Node function for handling web search queries.
|
105 |
+
|
106 |
+
Args:
|
107 |
+
state (AgentState): The current agent state.
|
108 |
+
|
109 |
+
Returns:
|
110 |
+
dict: Updated state with the LLM response.
|
111 |
+
"""
|
112 |
+
current_date = datetime.now().strftime("%B %d, %Y")
|
113 |
+
# Format the system prompt with the current date
|
114 |
+
system_message = SystemMessage(content=WEB_SEARCH_PROMPT.format(current_date=current_date))
|
115 |
+
# Re-bind tools for each invocation (defensive)
|
116 |
+
web_search_preview = [{"type": "web_search_preview"}]
|
117 |
+
response = llm_with_tools.bind_tools(web_search_preview).invoke(
|
118 |
+
[system_message] + state.get("messages")
|
119 |
+
)
|
120 |
+
return {"messages": state.get("messages") + [response]}
|
121 |
+
|
122 |
+
# Build the workflow graph
|
123 |
+
workflow = StateGraph(AgentState)
|
124 |
+
workflow.add_node("agent", agent_node)
|
125 |
+
workflow.add_edge(START, "agent")
|
126 |
+
workflow.add_edge("agent", END)
|
127 |
+
return workflow.compile(name="web_search_agent")
|
128 |
+
|
129 |
+
def create_youtube_viwer_graph() -> StateGraph:
|
130 |
+
"""
|
131 |
+
Create the YouTube viewer agent graph.
|
132 |
+
|
133 |
+
Returns:
|
134 |
+
StateGraph: The compiled YouTube viewer agent workflow.
|
135 |
+
"""
|
136 |
+
def agent_node(state: AgentState) -> dict:
|
137 |
+
"""
|
138 |
+
Node function for handling YouTube-related queries.
|
139 |
+
|
140 |
+
Args:
|
141 |
+
state (AgentState): The current agent state.
|
142 |
+
|
143 |
+
Returns:
|
144 |
+
dict: Updated state with the LLM response.
|
145 |
+
"""
|
146 |
+
current_date = datetime.now().strftime("%B %d, %Y")
|
147 |
+
# Format the system prompt with the current date
|
148 |
+
system_message = SystemMessage(content=YOUTUBE_PROMPT.format(current_date=current_date))
|
149 |
+
# Bind the YouTube transcript tool to the Gemini LLM
|
150 |
+
llm_with_tools = google_llm.bind_tools(tools)
|
151 |
+
response = llm_with_tools.invoke([system_message] + state.get("messages"))
|
152 |
+
return {"messages": state.get("messages") + [response]}
|
153 |
+
|
154 |
+
# Build the workflow graph with tool node and conditional routing
|
155 |
+
workflow = StateGraph(AgentState)
|
156 |
+
workflow.add_node("llm", agent_node)
|
157 |
+
workflow.add_node("tools", ToolNode(tools))
|
158 |
+
workflow.set_entry_point("llm")
|
159 |
+
workflow.add_conditional_edges(
|
160 |
+
"llm",
|
161 |
+
tools_condition,
|
162 |
+
{
|
163 |
+
"tools": "tools", # If tool is needed, go to tools node
|
164 |
+
"__end__": END, # Otherwise, end the workflow
|
165 |
+
},
|
166 |
+
)
|
167 |
+
workflow.add_edge("tools", "llm") # After tool, return to LLM node
|
168 |
+
return workflow.compile(name="youtube_viwer_agent")
|
169 |
+
|
170 |
+
def create_multimodal_agent_graph() -> StateGraph:
|
171 |
+
"""
|
172 |
+
Create the multimodal agent graph using Gemini for best multimodal support.
|
173 |
+
|
174 |
+
Returns:
|
175 |
+
StateGraph: The compiled multimodal agent workflow.
|
176 |
+
"""
|
177 |
+
def agent_node(state: AgentState) -> dict:
|
178 |
+
"""
|
179 |
+
Node function for handling multimodal queries.
|
180 |
+
|
181 |
+
Args:
|
182 |
+
state (AgentState): The current agent state.
|
183 |
+
|
184 |
+
Returns:
|
185 |
+
dict: Updated state with the LLM response.
|
186 |
+
"""
|
187 |
+
current_date = datetime.now().strftime("%B %d, %Y")
|
188 |
+
# Compose the system message with the multimodal prompt and current date
|
189 |
+
system_message = SystemMessage(content=MULTIMODAL_PROMPT + f" Today's date: {current_date}.")
|
190 |
+
messages = [system_message] + state.get("messages")
|
191 |
+
# Invoke Gemini LLM for multimodal reasoning
|
192 |
+
response = google_llm.invoke(messages)
|
193 |
+
return {"messages": state.get("messages") + [response]}
|
194 |
+
|
195 |
+
# Build the workflow graph
|
196 |
+
workflow = StateGraph(AgentState)
|
197 |
+
workflow.add_node("agent", agent_node)
|
198 |
+
workflow.add_edge(START, "agent")
|
199 |
+
workflow.add_edge("agent", END)
|
200 |
+
return workflow.compile(name="multimodal_agent")
|
201 |
+
|
202 |
+
# Instantiate the agent graphs
|
203 |
+
multimodal_agent = create_multimodal_agent_graph()
|
204 |
+
web_search_agent = create_web_search_graph()
|
205 |
+
youtube_agent = create_youtube_viwer_graph()
|
206 |
+
|
207 |
+
# Create the supervisor workflow to route queries to the appropriate sub-agent
|
208 |
+
supervisor_workflow = create_supervisor(
|
209 |
+
[web_search_agent, youtube_agent, multimodal_agent],
|
210 |
+
model=openai_llm,
|
211 |
+
prompt=(
|
212 |
+
"You are a supervisor. For each question, call one of your sub-agents and return their answer directly to the user. Do not modify, summarize, or rephrase the answer."
|
213 |
+
)
|
214 |
+
)
|
215 |
+
|
216 |
+
# Compile the supervisor agent for use in the application
|
217 |
+
supervisor_agent = supervisor_workflow.compile(name="supervisor_agent")
|
prompts.py
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Agent prompts."""
|
2 |
+
|
3 |
+
WEB_SEARCH_PROMPT = (
|
4 |
+
"You are a web search expert. Today's date: {current_date}. "
|
5 |
+
"Always search online for the user's question and provide a direct, concise answer. "
|
6 |
+
"If the question includes an image, file, or code, analyze it as part of your answer if possible. "
|
7 |
+
"If information is unavailable, state so clearly. "
|
8 |
+
"Never ask the user questions. Do not say 'I don't know.' Do not provide suggestions or follow-up questions."
|
9 |
+
)
|
10 |
+
|
11 |
+
YOUTUBE_PROMPT = (
|
12 |
+
"You are a YouTube/video expert. Today's date: {current_date}. "
|
13 |
+
"If a YouTube link is provided, watch the video and answer the user's question directly. "
|
14 |
+
"Only answer questions that require information from YouTube or online videos. "
|
15 |
+
"Always answer directly and concisely. Never ask the user questions. "
|
16 |
+
"If the information is not available in the video, state so clearly. "
|
17 |
+
"Do not say 'I don't know.' Do not provide suggestions or follow-up questions."
|
18 |
+
)
|
19 |
+
|
20 |
+
MULTIMODAL_PROMPT = (
|
21 |
+
"You are a multimodal expert. If the question includes an image, file, code, or audio, "
|
22 |
+
"analyze it and provide a direct, concise answer. "
|
23 |
+
"You can process and analyze images, files, code, and audio if present in the question. "
|
24 |
+
"If you cannot answer, state so clearly. "
|
25 |
+
"Never ask the user questions, never say 'I don't know', and never provide suggestions or follow-up questions."
|
26 |
+
)
|