Spaces:
Build error
Build error
File size: 4,982 Bytes
9554084 7382912 9554084 850836c 28c4823 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 |
import inspect
import json
import logging
import os
import gradio as gr
from gradio import routes
import spacy # noqa
from typing import List, Type
from dotenv import load_dotenv
load_dotenv()
TOKENS2INT_ERROR_INT = 32202
log = logging.getLogger()
ONES = [
"zero", "one", "two", "three", "four", "five", "six", "seven", "eight",
"nine", "ten", "eleven", "twelve", "thirteen", "fourteen", "fifteen",
"sixteen", "seventeen", "eighteen", "nineteen",
]
# token_mapping = json.load(open('str_mapping.json'))
CHAR_MAPPING = {
"-": " ",
"_": " ",
}
CHAR_MAPPING.update((str(i), word) for i, word in enumerate([" " + s + " " for s in ONES]))
TOKEN_MAPPING = dict(enumerate([" " + s + " " for s in ONES]))
BQ_JSON = os.environ['BQ_JSON']
def tokenize(text):
return text.split()
def detokenize(tokens):
return ' '.join(tokens)
def replace_tokens(tokens, token_mapping=TOKEN_MAPPING):
return [token_mapping.get(tok, tok) for tok in tokens]
def replace_chars(text, char_mapping=CHAR_MAPPING):
return ''.join((char_mapping.get(c, c) for c in text))
def tokens2int(tokens, numwords={}):
""" Convert an English str containing number words into an int
>>> text2int("nine")
9
>>> text2int("forty two")
42
>>> text2int("1 2 three")
123
"""
if not numwords:
tens = ["", "", "twenty", "thirty", "forty", "fifty", "sixty", "seventy", "eighty", "ninety"]
scales = ["hundred", "thousand", "million", "billion", "trillion"]
numwords["and"] = (1, 0)
for idx, word in enumerate(ONES):
numwords[word] = (1, idx)
for idx, word in enumerate(tens):
numwords[word] = (1, idx * 10)
for idx, word in enumerate(scales):
numwords[word] = (10 ** (idx * 3 or 2), 0)
current = result = 0
for word in tokens:
if word not in numwords:
raise Exception("Illegal word: " + word)
scale, increment = numwords[word]
current = current * scale + increment
if scale > 100:
result += current
current = 0
return str(result + current)
def text2int(text):
return tokens2int(tokenize(replace_chars(text)))
def try_text2int(text):
text = str(text)
try:
intstr = tokens2int(tokens2int(tokenize(replace_chars(text))))
except Exception as e:
log.error(str(e))
log.error(f'User input: {text}')
intstr = TOKENS2INT_ERROR_INT
return str(intstr)
def try_text2int_preprocessed(text):
text = str(text)
try:
tokens = replace_tokens(tokenize(replace_chars(str(text))))
except Exception as e:
log.error(str(e))
tokens = text.split()
try:
intstr = tokens2int(tokens)
except Exception as e:
log.error(str(e))
intstr = str(TOKENS2INT_ERROR_INT)
return intstr
def get_types(cls_set: List[Type], component: str):
docset = []
types = []
if component == "input":
for cls in cls_set:
doc = inspect.getdoc(cls)
doc_lines = doc.split("\n")
docset.append(doc_lines[1].split(":")[-1])
types.append(doc_lines[1].split(")")[0].split("(")[-1])
else:
for cls in cls_set:
doc = inspect.getdoc(cls)
doc_lines = doc.split("\n")
docset.append(doc_lines[-1].split(":")[-1])
types.append(doc_lines[-1].split(")")[0].split("(")[-1])
return docset, types
routes.get_types = get_types
with gr.Blocks() as html_block:
gr.Markdown("# Gradio Blocks (3.0) with REST API")
textbox_input = gr.Textbox(
value="forty-two",
label="Input number words:",
)
button_text2int = gr.Button("text2int")
button_text2int_preprocessed = gr.Button("text2int with preprocessing")
textbox_output = gr.Textbox(
value="42",
label="Output integer:"
)
button_text2int.click(try_text2int, inputs=[textbox_input], outputs=[textbox_output], api_name="text2int")
button_text2int_preprocessed.click(try_text2int_preprocessed, inputs=[textbox_input], outputs=[textbox_output], api_name="text2int_preprocessed")
gr.Markdown(r"""
## API
You can select which function to run using the `fn_index` argument:
```python
import requests
requests.post(
url="https://cetinca-mathtext-nlu.hf.space/run/predict/run/predict", json={"data": ["one hundred forty-two"], "fn_index": 0}
).json()
```
Or using `curl`:
```bash
curl -X POST https://cetinca-mathtext-nlu.hf.space/run/predict/ -H 'Content-Type: application/json' -d '{"data": ["one hundred forty-two"], "fn_index": 0}'
```
""" + f"{json.loads(BQ_JSON)['type']}")
interface = gr.Interface(lambda: None, inputs=[textbox_input], outputs=[textbox_output])
html_block.input_components = interface.input_components
html_block.output_components = interface.output_components
html_block.examples = None
html_block.predict_durations = []
bapp = html_block.launch()
|