Spaces:
Sleeping
Sleeping
File size: 11,841 Bytes
335bcd6 6aa2d3f 7896f13 335bcd6 7896f13 335bcd6 7896f13 6aa2d3f 7896f13 335bcd6 6aa2d3f 335bcd6 7896f13 335bcd6 7896f13 335bcd6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 |
import gradio as gr
import spaces
import torch
from transformers import Qwen2_5_VLForConditionalGeneration, AutoProcessor
from qwen_vl_utils import process_vision_info
from PIL import Image
import numpy as np
import traceback
from typing import Any, Optional
import utils
from utils import BoundingBox
import blurnonymize
MODEL_NAME = "cborg/qwen2.5VL-3b-privacydetector"
MAX_NEW_TOKENS = 2048
TEMPERATURE = 1.0
MIN_P = 0.1
SYSTEM_PROMPT = """You are a helpful assistant for privacy analysis of images. Please always answer in English. Please obey the users instructions and follow the provided format."""
DEFAULT_PROMPT = """
You are an expert at pixel perfect image analysis and in privacy.
First write down your thoughts within a <think> block.
Please go through all objects in the image and consider whether they are private data or not.
End this with a </think> block.
After going through everything, output your findings in an <output></output> block as a json list with the following keys:
{"label": <|object_ref_start|>str<|object_ref_end|>, "description": str, "explanation": str, "bounding_box": <|box_start|>[x_min, y_min, x_max, y_max]<|box_end|>, "severity": int}
Some things to remember:
- private data is only data thats linked to a human person, common examples being a persons face, name, address, license plate
- whenever something can be used to identify a unique human person, it is private data
- report sensitive data as well, such as a nude person
- Severity is a number between 0 and 10, with 0 being not private data and 10 being extremely sensitive private data.
- don't report items which dont contain private data in the final output, you may mention them in your thoughts
- animals and animal faces are not personal data, so a giraffe or a dog is not private data
- you can use whatever format you want within the <think> </think> blocks
- only output valid JSON in between the <output> </output> blocks, adhering to the schema provided
- output the bounding box always as an array of form [x_min, y_min, x_max, y_max]
- private data have a severity greater than 0, so a human face would have severity 6
- go through the image step by step and report the private data, its better to be a bit too sensitive than to miss anything
- put the bounding boxes around the human's face and not the entire person when reporting people as personal data
- Think step by step, take your time.
Here is the image to analyse, start your analysis directly after:
"""
def build_messages(image, history: Optional[list[dict[str, Any]]] = None, prompt: Optional[str] = None):
if not prompt:
prompt = DEFAULT_PROMPT
if history:
return [
*history,
{"role": "user", "content": [{"type": "text", "text": prompt}]},
]
return [
{
"role": "system",
"content": [
{
"type": "text",
"text": SYSTEM_PROMPT,
}
],
},
{
"role": "user",
"content": [
{"type": "text", "text": prompt},
{"type": "image", "image": image},
],
},
]
# --- Model Loading ---
# Load model using unsloth for 4-bit quantization
try:
# default: Load the model on the available device(s)
model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
MODEL_NAME,
torch_dtype=torch.bfloat16,
trust_remote_code=True
).to("cuda").eval()
tokenizer = AutoProcessor.from_pretrained(MODEL_NAME, trust_remote_code=True)
model.to("cuda").eval() # Ensure model is on GPU and in eval mode
print("Model loaded successfully.")
except Exception as e:
print(f"Error loading model: {e}")
print(traceback.format_exc())
# Optionally raise or handle the error to prevent app launch if model fails
raise gr.Error(f"Failed to load model {MODEL_NAME}. Check logs. Error: {e}")
# --- Blurnonymizer Instance ---
try:
blurnonymizer_instance = blurnonymize.ImageBlurnonymizer()
print("Blurnonymizer initialized successfully.")
except Exception as e:
print(f"Error initializing Blurnonymizer: {e}")
print(traceback.format_exc())
raise gr.Error(f"Failed to initialize Blurnonymizer. Check logs. Error: {e}")
# --- Core Processing Function ---
@spaces.GPU(duration=20) # add this so that the sam segmentation runs on the gpu
def anonymise_image(input_image_np: np.ndarray, boxes: list[BoundingBox]):
"""Calls the blurnonymizer instance to censor the image."""
if not blurnonymizer_instance:
raise gr.Error("Blurnonymizer not initialized.")
return blurnonymizer_instance.censor_image_blur_easy(
input_image_np, boxes, method="segmentation", verbose=False # Set verbose as needed
)
def run_model_inference(input_image_pil: Image.Image, prompt_text: str):
"""
Runs model inference on the input image and prompt.
"""
# 1. Run Model Inference
print("Running model inference...")
messages = build_messages(
input_image_pil,
prompt=prompt_text)
input_text = tokenizer.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
image_inputs, video_inputs = process_vision_info(messages)
inputs = tokenizer(
text=[input_text],
images=image_inputs,
videos=video_inputs,
padding=True,
return_tensors="pt",
).to("cuda")
out_tokens = model.generate(
**inputs,
max_new_tokens=MAX_NEW_TOKENS,
use_cache=True,
temperature=TEMPERATURE,
min_p=MIN_P,
)
generated_ids_trimmed = [
out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, out_tokens)
]
raw_model_output = tokenizer.batch_decode(
generated_ids_trimmed,
skip_special_tokens=True,
clean_up_tokenization_spaces=True,
)[0]
input_height = inputs['image_grid_thw'][0][1]*14
input_width = inputs['image_grid_thw'][0][2]*14
if input_height != input_image_pil.height:
print("[!] tokenized image height differs from actual height:")
print(f"Actual: {input_image_pil.height}, processed: {input_height}")
if input_width != input_image_pil.width:
print("[!] tokenized image width differs from actual width:")
print(f"Actual: {input_image_pil.width}, processed: {input_width}")
print("[+] Model inference completed.")
print("[*] Raw output:")
print(raw_model_output)
return raw_model_output, input_height, input_width
@spaces.GPU(duration=90) # Request GPU for this function, allow up to 120 seconds
def analyze_image(input_image_pil: Image.Image, prompt_text: str):
"""
Analyzes the input image using the VLM, visualizes findings, and anonymizes.
"""
if input_image_pil is None:
raise gr.Error("Please upload an image.")
if not prompt_text:
raise gr.Error("Please provide a prompt.")
original_image_np = np.array(input_image_pil)
# 1. Run Model Inference
try:
raw_model_output, image_height, image_width = run_model_inference(input_image_pil, prompt_text)
except Exception as e:
print(f"Error during model inference: {e}")
print(traceback.format_exc())
raise gr.Error(f"Model inference failed: {e}")
# 2. Parse Findings
try:
print("Parsing findings...")
# Use the provided utility functions
parsed_findings = utils.parse_into_models(
utils.parse_json_response(raw_model_output)
)
print(f"[+] Parsed {len(parsed_findings)} findings.")
if not parsed_findings:
print("[*] No findings were parsed from the model output.")
except Exception as e:
print(f"Error parsing model output: {e}")
print(traceback.format_exc())
# Don't raise error here, allow visualization/anonymization steps to proceed if possible
# or return early with only original image if parsing is critical
gr.Warning(
f"Could not parse findings from model output: {e}. Visualization and anonymization might be incomplete."
)
# Fallback: visualize/anonymize based on empty findings list if needed
parsed_findings = [] # Ensure it's an empty list for downstream steps
# Initialize boxes_for_viz before the try block
boxes_for_viz = []
try:
# 3. Visualize Findings
print("Visualizing findings...")
if parsed_findings:
# Convert Findings to BoundingBox for visualization function
boxes_for_viz = [BoundingBox.from_finding(f) for f in parsed_findings]
# Ensure image is in the correct format (np array) for visualize_boxes_annotated
visualized_image_np = utils.visualize_boxes_annotated(
original_image_np, boxes_for_viz
)
print("Visualization generated.")
else:
print("No findings to visualize, using original image.")
visualized_image_np = (
original_image_np.copy()
) # Show original if no findings
except Exception as e:
print(f"Error during visualization: {e}")
print(traceback.format_exc())
gr.Warning(f"Failed to visualize findings: {e}")
visualized_image_np = original_image_np.copy() # Fallback to original
try:
# 4. Anonymize Image
print("Anonymizing image...")
# Use the blurnonymize function with the raw output (as it might contain info needed by the func)
# Ensure image is numpy array
# Check if boxes_for_viz is populated before calling anonymise_image
if boxes_for_viz:
anonymized_image_np = anonymise_image(original_image_np, boxes_for_viz)
print("Anonymization generated.")
else:
print("No boxes found for anonymization, using original image.")
anonymized_image_np = original_image_np.copy()
except Exception as e:
print(f"Error during anonymization: {e}")
print(traceback.format_exc())
gr.Warning(f"Failed to anonymize image: {e}")
anonymized_image_np = original_image_np.copy() # Fallback to original
# Convert numpy arrays back to PIL Images for Gradio output if needed, or let Gradio handle numpy
# Gradio's gr.Image output can handle numpy arrays directly
# Return the three images
return raw_model_output, visualized_image_np, anonymized_image_np
# --- Gradio Interface ---
with gr.Blocks() as demo:
gr.Markdown("# Private Data Detection & Anonymization UI")
gr.Markdown(f"Using model: `{MODEL_NAME}` on ZeroGPU.")
with gr.Row():
with gr.Column(scale=1):
input_image = gr.Image(type="pil", label="Upload Image")
prompt_textbox = gr.Textbox(
label="Analysis Prompt", value=DEFAULT_PROMPT, lines=4
)
analyze_button = gr.Button("Analyze Image")
with gr.Column(scale=2):
with gr.Column():
raw_output = gr.Textbox(
label="Raw Model Output", interactive=False
)
output_visualized = gr.Image(
label="Detected Privacy Findings", type="numpy", interactive=False
)
output_anonymized = gr.Image(
label="Anonymized", type="numpy", interactive=False
)
analyze_button.click(
fn=analyze_image,
inputs=[input_image, prompt_textbox],
outputs=[raw_output, output_visualized, output_anonymized],
)
# --- Launch App ---
if __name__ == "__main__":
demo.queue().launch(
debug=True
) # Enable queue for handling multiple requests, debug mode for logs
|