sfast
Browse files- README.md +1 -1
- app.py +38 -33
- requirements.txt +3 -2
README.md
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
---
|
2 |
title: Real-Time Text-to-Image SDXL Lightning
|
3 |
-
emoji:
|
4 |
colorFrom: yellow
|
5 |
colorTo: purple
|
6 |
sdk: gradio
|
|
|
1 |
---
|
2 |
title: Real-Time Text-to-Image SDXL Lightning
|
3 |
+
emoji: ⚡️⚡️⚡️⚡️
|
4 |
colorFrom: yellow
|
5 |
colorTo: purple
|
6 |
sdk: gradio
|
app.py
CHANGED
@@ -1,18 +1,18 @@
|
|
1 |
-
from diffusers import
|
|
|
|
|
|
|
|
|
2 |
import torch
|
3 |
import os
|
4 |
from huggingface_hub import hf_hub_download
|
5 |
|
6 |
-
try:
|
7 |
-
import intel_extension_for_pytorch as ipex
|
8 |
-
except:
|
9 |
-
pass
|
10 |
|
11 |
from PIL import Image
|
12 |
import gradio as gr
|
13 |
import time
|
14 |
from safetensors.torch import load_file
|
15 |
-
|
16 |
|
17 |
# Constants
|
18 |
BASE = "stabilityai/stable-diffusion-xl-base-1.0"
|
@@ -30,37 +30,45 @@ CHECKPOINT = "sdxl_lightning_1step_unet_x0.safetensors"
|
|
30 |
|
31 |
TORCH_COMPILE = os.environ.get("TORCH_COMPILE", "0") == "1"
|
32 |
# check if MPS is available OSX only M1/M2/M3 chips
|
33 |
-
|
34 |
-
|
35 |
-
device = torch.device(
|
36 |
-
"cuda" if torch.cuda.is_available() else "xpu" if xpu_available else "cpu"
|
37 |
-
)
|
38 |
torch_device = device
|
39 |
torch_dtype = torch.float16
|
40 |
|
41 |
print(f"TORCH_COMPILE: {TORCH_COMPILE}")
|
42 |
print(f"device: {device}")
|
43 |
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
torch_dtype = torch.float32
|
48 |
-
|
49 |
-
|
50 |
pipe = StableDiffusionXLPipeline.from_pretrained(
|
51 |
-
BASE, torch_dtype=
|
52 |
-
)
|
53 |
|
|
|
54 |
pipe.scheduler = EulerDiscreteScheduler.from_config(
|
55 |
pipe.scheduler.config, timestep_spacing="trailing", prediction_type="sample"
|
56 |
)
|
|
|
|
|
|
|
|
|
57 |
|
58 |
-
|
59 |
-
|
60 |
-
)
|
|
|
|
|
61 |
|
62 |
-
|
63 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
|
65 |
|
66 |
def predict(prompt, seed=1231231):
|
@@ -71,8 +79,6 @@ def predict(prompt, seed=1231231):
|
|
71 |
generator=generator,
|
72 |
num_inference_steps=1,
|
73 |
guidance_scale=0.0,
|
74 |
-
width=512,
|
75 |
-
height=512,
|
76 |
# original_inference_steps=params.lcm_steps,
|
77 |
output_type="pil",
|
78 |
)
|
@@ -102,10 +108,10 @@ css = """
|
|
102 |
with gr.Blocks(css=css) as demo:
|
103 |
with gr.Column(elem_id="container"):
|
104 |
gr.Markdown(
|
105 |
-
"""# SDXL
|
106 |
## Unofficial Demo
|
107 |
-
SDXL
|
108 |
-
**Model**: https://huggingface.co/
|
109 |
""",
|
110 |
elem_id="intro",
|
111 |
)
|
@@ -123,8 +129,8 @@ with gr.Blocks(css=css) as demo:
|
|
123 |
)
|
124 |
with gr.Accordion("Run with diffusers"):
|
125 |
gr.Markdown(
|
126 |
-
"""## Running SDXL
|
127 |
-
|
128 |
import torch
|
129 |
from diffusers import (
|
130 |
StableDiffusionXLPipeline,
|
@@ -156,8 +162,7 @@ pipe.scheduler = EulerDiscreteScheduler.from_config(
|
|
156 |
pipe("A girl smiling", num_inference_steps=1, guidance_scale=0).images[0].save(
|
157 |
"output.png"
|
158 |
)
|
159 |
-
|
160 |
-
```
|
161 |
"""
|
162 |
)
|
163 |
|
|
|
1 |
+
from diffusers import (
|
2 |
+
StableDiffusionXLPipeline,
|
3 |
+
EulerDiscreteScheduler,
|
4 |
+
UNet2DConditionModel,
|
5 |
+
)
|
6 |
import torch
|
7 |
import os
|
8 |
from huggingface_hub import hf_hub_download
|
9 |
|
|
|
|
|
|
|
|
|
10 |
|
11 |
from PIL import Image
|
12 |
import gradio as gr
|
13 |
import time
|
14 |
from safetensors.torch import load_file
|
15 |
+
from sfast.compilers.diffusion_pipeline_compiler import compile, CompilationConfig
|
16 |
|
17 |
# Constants
|
18 |
BASE = "stabilityai/stable-diffusion-xl-base-1.0"
|
|
|
30 |
|
31 |
TORCH_COMPILE = os.environ.get("TORCH_COMPILE", "0") == "1"
|
32 |
# check if MPS is available OSX only M1/M2/M3 chips
|
33 |
+
|
34 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
|
|
|
|
|
35 |
torch_device = device
|
36 |
torch_dtype = torch.float16
|
37 |
|
38 |
print(f"TORCH_COMPILE: {TORCH_COMPILE}")
|
39 |
print(f"device: {device}")
|
40 |
|
41 |
+
# Load model.
|
42 |
+
unet = UNet2DConditionModel.from_config(BASE, subfolder="unet").to(device, torch_dtype)
|
43 |
+
unet.load_state_dict(load_file(hf_hub_download(REPO, CHECKPOINT), device="cuda"))
|
|
|
|
|
|
|
44 |
pipe = StableDiffusionXLPipeline.from_pretrained(
|
45 |
+
BASE, unet=unet, torch_dtype=torch_dtype, variant="fp16"
|
46 |
+
).to(device)
|
47 |
|
48 |
+
# Ensure sampler uses "trailing" timesteps and "sample" prediction type.
|
49 |
pipe.scheduler = EulerDiscreteScheduler.from_config(
|
50 |
pipe.scheduler.config, timestep_spacing="trailing", prediction_type="sample"
|
51 |
)
|
52 |
+
pipe.set_progress_bar_config(disable=True)
|
53 |
+
config = CompilationConfig.Default()
|
54 |
+
try:
|
55 |
+
import xformers
|
56 |
|
57 |
+
config.enable_xformers = True
|
58 |
+
except ImportError:
|
59 |
+
print("xformers not installed, skip")
|
60 |
+
try:
|
61 |
+
import triton
|
62 |
|
63 |
+
config.enable_triton = True
|
64 |
+
except ImportError:
|
65 |
+
print("Triton not installed, skip")
|
66 |
+
# CUDA Graph is suggested for small batch sizes and small resolutions to reduce CPU overhead.
|
67 |
+
# But it can increase the amount of GPU memory used.
|
68 |
+
# For StableVideoDiffusionPipeline it is not needed.
|
69 |
+
config.enable_cuda_graph = True
|
70 |
+
|
71 |
+
pipe = compile(pipe, config)
|
72 |
|
73 |
|
74 |
def predict(prompt, seed=1231231):
|
|
|
79 |
generator=generator,
|
80 |
num_inference_steps=1,
|
81 |
guidance_scale=0.0,
|
|
|
|
|
82 |
# original_inference_steps=params.lcm_steps,
|
83 |
output_type="pil",
|
84 |
)
|
|
|
108 |
with gr.Blocks(css=css) as demo:
|
109 |
with gr.Column(elem_id="container"):
|
110 |
gr.Markdown(
|
111 |
+
"""# SDXL-Lightning- Text To Image 1-Step
|
112 |
## Unofficial Demo
|
113 |
+
SDXL-Lightining https://huggingface.co/ByteDance/SDXL-Lightning
|
114 |
+
**Model**: https://huggingface.co/ByteDance/SDXL-Lightning
|
115 |
""",
|
116 |
elem_id="intro",
|
117 |
)
|
|
|
129 |
)
|
130 |
with gr.Accordion("Run with diffusers"):
|
131 |
gr.Markdown(
|
132 |
+
"""## Running SDXL-Lightning with `diffusers`
|
133 |
+
```py
|
134 |
import torch
|
135 |
from diffusers import (
|
136 |
StableDiffusionXLPipeline,
|
|
|
162 |
pipe("A girl smiling", num_inference_steps=1, guidance_scale=0).images[0].save(
|
163 |
"output.png"
|
164 |
)
|
165 |
+
```
|
|
|
166 |
"""
|
167 |
)
|
168 |
|
requirements.txt
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
diffusers==0.26.3
|
2 |
transformers
|
3 |
gradio==4.19.1
|
4 |
-
torch==2.
|
5 |
fastapi==0.104.0
|
6 |
uvicorn==0.23.2
|
7 |
Pillow==10.1.0
|
@@ -12,4 +12,5 @@ peft==0.6.0
|
|
12 |
xformers
|
13 |
hf_transfer
|
14 |
huggingface_hub
|
15 |
-
safetensors
|
|
|
|
1 |
diffusers==0.26.3
|
2 |
transformers
|
3 |
gradio==4.19.1
|
4 |
+
torch==2.1.0
|
5 |
fastapi==0.104.0
|
6 |
uvicorn==0.23.2
|
7 |
Pillow==10.1.0
|
|
|
12 |
xformers
|
13 |
hf_transfer
|
14 |
huggingface_hub
|
15 |
+
safetensors
|
16 |
+
stable_fast @ https://github.com/chengzeyi/stable-fast/releases/download/v1.0.2/stable_fast-1.0.2+torch211cu121-cp310-cp310-manylinux2014_x86_64.whl; sys_platform != 'darwin' or platform_machine != 'arm64'
|