|
from diffusers import ( |
|
StableDiffusionXLPipeline, |
|
EulerDiscreteScheduler, |
|
UNet2DConditionModel, |
|
) |
|
import torch |
|
import os |
|
from huggingface_hub import hf_hub_download |
|
|
|
|
|
from PIL import Image |
|
import gradio as gr |
|
import time |
|
from safetensors.torch import load_file |
|
from sfast.compilers.diffusion_pipeline_compiler import compile, CompilationConfig |
|
|
|
|
|
BASE = "stabilityai/stable-diffusion-xl-base-1.0" |
|
REPO = "ByteDance/SDXL-Lightning" |
|
|
|
CHECKPOINT = "sdxl_lightning_1step_unet_x0.safetensors" |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
TORCH_COMPILE = os.environ.get("TORCH_COMPILE", "0") == "1" |
|
|
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
torch_device = device |
|
torch_dtype = torch.float16 |
|
|
|
print(f"TORCH_COMPILE: {TORCH_COMPILE}") |
|
print(f"device: {device}") |
|
|
|
|
|
unet = UNet2DConditionModel.from_config(BASE, subfolder="unet").to(device, torch_dtype) |
|
unet.load_state_dict(load_file(hf_hub_download(REPO, CHECKPOINT), device="cuda")) |
|
pipe = StableDiffusionXLPipeline.from_pretrained( |
|
BASE, unet=unet, torch_dtype=torch_dtype, variant="fp16" |
|
).to(device) |
|
|
|
|
|
pipe.scheduler = EulerDiscreteScheduler.from_config( |
|
pipe.scheduler.config, timestep_spacing="trailing", prediction_type="sample" |
|
) |
|
pipe.set_progress_bar_config(disable=True) |
|
config = CompilationConfig.Default() |
|
try: |
|
import xformers |
|
|
|
config.enable_xformers = True |
|
except ImportError: |
|
print("xformers not installed, skip") |
|
try: |
|
import triton |
|
|
|
config.enable_triton = True |
|
except ImportError: |
|
print("Triton not installed, skip") |
|
|
|
|
|
|
|
config.enable_cuda_graph = True |
|
|
|
pipe = compile(pipe, config) |
|
|
|
|
|
def predict(prompt, seed=1231231): |
|
generator = torch.manual_seed(seed) |
|
last_time = time.time() |
|
results = pipe( |
|
prompt=prompt, |
|
generator=generator, |
|
num_inference_steps=1, |
|
guidance_scale=0.0, |
|
|
|
|
|
|
|
output_type="pil", |
|
) |
|
print(f"Pipe took {time.time() - last_time} seconds") |
|
nsfw_content_detected = ( |
|
results.nsfw_content_detected[0] |
|
if "nsfw_content_detected" in results |
|
else False |
|
) |
|
if nsfw_content_detected: |
|
gr.Warning("NSFW content detected.") |
|
return Image.new("RGB", (512, 512)) |
|
return results.images[0] |
|
|
|
|
|
css = """ |
|
#container{ |
|
margin: 0 auto; |
|
max-width: 40rem; |
|
} |
|
#intro{ |
|
max-width: 100%; |
|
margin: 0 auto; |
|
} |
|
""" |
|
with gr.Blocks(css=css) as demo: |
|
with gr.Column(elem_id="container"): |
|
gr.Markdown( |
|
""" |
|
# SDXL-Lightning- Text To Image 1-Step |
|
**Model**: https://huggingface.co/ByteDance/SDXL-Lightning |
|
""", |
|
elem_id="intro", |
|
) |
|
with gr.Row(): |
|
with gr.Row(): |
|
prompt = gr.Textbox( |
|
placeholder="Insert your prompt here:", scale=5, container=False |
|
) |
|
generate_bt = gr.Button("Generate", scale=1) |
|
|
|
image = gr.Image(type="filepath") |
|
with gr.Accordion("Advanced options", open=False): |
|
seed = gr.Slider( |
|
randomize=True, minimum=0, maximum=12013012031030, label="Seed", step=1 |
|
) |
|
with gr.Accordion("Run with diffusers"): |
|
gr.Markdown( |
|
"""## Running SDXL-Lightning with `diffusers` |
|
```py |
|
import torch |
|
from diffusers import ( |
|
StableDiffusionXLPipeline, |
|
UNet2DConditionModel, |
|
EulerDiscreteScheduler, |
|
) |
|
from huggingface_hub import hf_hub_download |
|
from safetensors.torch import load_file |
|
|
|
base = "stabilityai/stable-diffusion-xl-base-1.0" |
|
repo = "ByteDance/SDXL-Lightning" |
|
ckpt = "sdxl_lightning_1step_unet_x0.safetensors" # Use the correct ckpt for your step setting! |
|
|
|
# Load model. |
|
unet = UNet2DConditionModel.from_config(base, subfolder="unet").to( |
|
"cuda", torch.float16 |
|
) |
|
unet.load_state_dict(load_file(hf_hub_download(repo, ckpt), device="cuda")) |
|
pipe = StableDiffusionXLPipeline.from_pretrained( |
|
base, unet=unet, torch_dtype=torch.float16, variant="fp16" |
|
).to("cuda") |
|
|
|
# Ensure sampler uses "trailing" timesteps and "sample" prediction type. |
|
pipe.scheduler = EulerDiscreteScheduler.from_config( |
|
pipe.scheduler.config, timestep_spacing="trailing", prediction_type="sample" |
|
) |
|
|
|
# Ensure using the same inference steps as the loaded model and CFG set to 0. |
|
pipe("A girl smiling", num_inference_steps=1, guidance_scale=0).images[0].save( |
|
"output.png" |
|
) |
|
``` |
|
""" |
|
) |
|
|
|
inputs = [prompt, seed] |
|
generate_bt.click(fn=predict, inputs=inputs, outputs=image, show_progress=False) |
|
prompt.input(fn=predict, inputs=inputs, outputs=image, show_progress=False) |
|
seed.change(fn=predict, inputs=inputs, outputs=image, show_progress=False) |
|
|
|
demo.queue() |
|
demo.launch() |
|
|