from typing import * import torch import numpy as np import torch.utils class AdaptiveGradClipper: """ Adaptive gradient clipping for training. """ def __init__( self, max_norm=None, clip_percentile=95.0, buffer_size=1000, ): self.max_norm = max_norm self.clip_percentile = clip_percentile self.buffer_size = buffer_size self._grad_norm = np.zeros(buffer_size, dtype=np.float32) self._max_norm = max_norm self._buffer_ptr = 0 self._buffer_length = 0 def __repr__(self): return f'AdaptiveGradClipper(max_norm={self.max_norm}, clip_percentile={self.clip_percentile})' def state_dict(self): return { 'grad_norm': self._grad_norm, 'max_norm': self._max_norm, 'buffer_ptr': self._buffer_ptr, 'buffer_length': self._buffer_length, } def load_state_dict(self, state_dict): self._grad_norm = state_dict['grad_norm'] self._max_norm = state_dict['max_norm'] self._buffer_ptr = state_dict['buffer_ptr'] self._buffer_length = state_dict['buffer_length'] def log(self): return { 'max_norm': self._max_norm, } def __call__(self, parameters, norm_type=2.0, error_if_nonfinite=False, foreach=None): """Clip the gradient norm of an iterable of parameters. The norm is computed over all gradients together, as if they were concatenated into a single vector. Gradients are modified in-place. Args: parameters (Iterable[Tensor] or Tensor): an iterable of Tensors or a single Tensor that will have gradients normalized norm_type (float): type of the used p-norm. Can be ``'inf'`` for infinity norm. error_if_nonfinite (bool): if True, an error is thrown if the total norm of the gradients from :attr:`parameters` is ``nan``, ``inf``, or ``-inf``. Default: False (will switch to True in the future) foreach (bool): use the faster foreach-based implementation. If ``None``, use the foreach implementation for CUDA and CPU native tensors and silently fall back to the slow implementation for other device types. Default: ``None`` Returns: Total norm of the parameter gradients (viewed as a single vector). """ max_norm = self._max_norm if self._max_norm is not None else float('inf') grad_norm = torch.nn.utils.clip_grad_norm_(parameters, max_norm=max_norm, norm_type=norm_type, error_if_nonfinite=error_if_nonfinite, foreach=foreach) if torch.isfinite(grad_norm): self._grad_norm[self._buffer_ptr] = grad_norm self._buffer_ptr = (self._buffer_ptr + 1) % self.buffer_size self._buffer_length = min(self._buffer_length + 1, self.buffer_size) if self._buffer_length == self.buffer_size: self._max_norm = np.percentile(self._grad_norm, self.clip_percentile) self._max_norm = min(self._max_norm, self.max_norm) if self.max_norm is not None else self._max_norm return grad_norm